mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 05:55:01 +08:00
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Signed-off-by: yewentao256 <zhyanwentao@126.com>
285 lines
9.1 KiB
Python
285 lines
9.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Mapping
|
|
from dataclasses import dataclass, field
|
|
from typing import Generic, NamedTuple, Optional, TypeVar, Union, cast
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
from PIL import Image
|
|
|
|
import vllm.envs as envs
|
|
from vllm.logger import init_logger
|
|
|
|
from .inputs import (MultiModalDataDict, MultiModalEncDecInputs,
|
|
MultiModalInputs, MultiModalKwargsItems,
|
|
MultiModalPlaceholderDict)
|
|
from .processing import (BaseMultiModalProcessor, BaseProcessingInfo,
|
|
EncDecMultiModalProcessor)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ProcessorInputs:
|
|
"""
|
|
Represents the keyword arguments to
|
|
[`vllm.multimodal.processing.BaseMultiModalProcessor.apply`][].
|
|
"""
|
|
prompt: Union[str, list[int]]
|
|
mm_data: MultiModalDataDict
|
|
hf_processor_mm_kwargs: Mapping[str, object] = field(default_factory=dict)
|
|
tokenization_kwargs: Mapping[str, object] = field(default_factory=dict)
|
|
|
|
|
|
class DummyEncoderData(NamedTuple):
|
|
"""Dummy data used for profiling."""
|
|
|
|
prompt_token_ids: list[int]
|
|
|
|
|
|
class DummyDecoderData(NamedTuple):
|
|
"""Dummy data used for profiling."""
|
|
|
|
prompt_token_ids: list[int]
|
|
multi_modal_data: MultiModalKwargsItems
|
|
multi_modal_placeholders: MultiModalPlaceholderDict
|
|
|
|
|
|
_I = TypeVar("_I", bound=BaseProcessingInfo)
|
|
|
|
|
|
class BaseDummyInputsBuilder(ABC, Generic[_I]):
|
|
"""
|
|
Abstract base class that constructs the dummy data to profile
|
|
multi-modal models.
|
|
"""
|
|
|
|
def __init__(self, info: _I) -> None:
|
|
super().__init__()
|
|
|
|
self.info = info
|
|
|
|
@abstractmethod
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
"""
|
|
Build the text input corresponding to `mm_counts`.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> MultiModalDataDict:
|
|
"""
|
|
Build the multimodal input which, after processing, results in
|
|
the maximum possible number of placeholder tokens.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def get_dummy_processor_inputs(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> ProcessorInputs:
|
|
"""
|
|
Build the input which, after processing, results in
|
|
the maximum possible number of placeholder tokens.
|
|
"""
|
|
dummy_text = self.get_dummy_text(mm_counts)
|
|
dummy_mm_data = self.get_dummy_mm_data(seq_len, mm_counts)
|
|
tokenization_kwargs = {"truncation": False}
|
|
|
|
return ProcessorInputs(prompt=dummy_text,
|
|
mm_data=dummy_mm_data,
|
|
tokenization_kwargs=tokenization_kwargs)
|
|
|
|
def _get_dummy_audios(
|
|
self,
|
|
*,
|
|
length: int,
|
|
num_audios: int,
|
|
) -> list[npt.NDArray]:
|
|
if num_audios == 0:
|
|
return []
|
|
audio = np.zeros((length, ))
|
|
return [audio] * num_audios
|
|
|
|
def _get_dummy_images(
|
|
self,
|
|
*,
|
|
width: int,
|
|
height: int,
|
|
num_images: int,
|
|
) -> list[Image.Image]:
|
|
if num_images == 0:
|
|
return []
|
|
image = Image.new("RGB", (width, height), color=255)
|
|
return [image] * num_images
|
|
|
|
def _get_dummy_videos(
|
|
self,
|
|
*,
|
|
width: int,
|
|
height: int,
|
|
num_frames: int,
|
|
num_videos: int,
|
|
) -> list[npt.NDArray]:
|
|
if num_videos == 0:
|
|
return []
|
|
video = np.full((num_frames, width, height, 3), 255)
|
|
return [video] * num_videos
|
|
|
|
|
|
class MultiModalProfiler(Generic[_I]):
|
|
"""
|
|
Contains code for running memory profiling for multi-modal models.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
processor: BaseMultiModalProcessor[_I],
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.processor = processor
|
|
|
|
@property
|
|
def processing_info(self) -> BaseProcessingInfo:
|
|
return self.processor.info
|
|
|
|
@property
|
|
def dummy_inputs(self) -> BaseDummyInputsBuilder[_I]:
|
|
return self.processor.dummy_inputs
|
|
|
|
def get_mm_limits(self) -> Mapping[str, int]:
|
|
return self.processor.allowed_mm_limits
|
|
|
|
def _get_dummy_mm_inputs(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Optional[Mapping[str, int]] = None,
|
|
) -> MultiModalInputs:
|
|
if mm_counts is None:
|
|
mm_counts = self.get_mm_limits()
|
|
|
|
factory = self.dummy_inputs
|
|
processor_inputs = factory.get_dummy_processor_inputs(
|
|
seq_len, mm_counts)
|
|
|
|
return self.processor.apply(
|
|
prompt=processor_inputs.prompt,
|
|
mm_data=processor_inputs.mm_data,
|
|
hf_processor_mm_kwargs=processor_inputs.hf_processor_mm_kwargs,
|
|
tokenization_kwargs=processor_inputs.tokenization_kwargs,
|
|
)
|
|
|
|
def _get_mm_num_tokens(
|
|
self,
|
|
mm_inputs: MultiModalInputs,
|
|
mm_embeddings_only: bool = True,
|
|
) -> Mapping[str, int]:
|
|
placeholders_by_modality = mm_inputs["mm_placeholders"]
|
|
|
|
return {
|
|
modality:
|
|
sum(item.get_num_embeds() if mm_embeddings_only else item.length
|
|
for item in placeholders)
|
|
for modality, placeholders in placeholders_by_modality.items()
|
|
}
|
|
|
|
def get_encoder_dummy_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Optional[Mapping[str, int]] = None,
|
|
) -> DummyEncoderData:
|
|
mm_inputs = self._get_dummy_mm_inputs(seq_len, mm_counts)
|
|
mm_inputs = cast(MultiModalEncDecInputs, mm_inputs)
|
|
|
|
# For encoder-decoder models, use encoder prompt token ids instead of
|
|
# decoder prompt to construct dummy seq_data for encoder profiling.
|
|
encoder_prompt_token_ids = mm_inputs["encoder_prompt_token_ids"]
|
|
|
|
total_len = len(encoder_prompt_token_ids)
|
|
|
|
processor = cast(EncDecMultiModalProcessor, self.processor)
|
|
if processor.pad_dummy_encoder_prompt:
|
|
num_tokens_to_pad = max(total_len, seq_len) - total_len
|
|
encoder_prompt_token_ids.extend([0] * num_tokens_to_pad)
|
|
# NOTE: Whisper allows total_len > seq_len.
|
|
elif total_len > seq_len and not envs.VLLM_USE_V1:
|
|
# `max_num_batched_tokens` is defined by `SchedulerConfig`
|
|
logger.warning_once(
|
|
"The encoder sequence length used for profiling (max_num_batched_tokens / max_num_seqs = %d) " # noqa: E501
|
|
"is too short to hold the multi-modal embeddings in the worst case (%d tokens in total, out of which %s are reserved for multi-modal embeddings). " # noqa: E501
|
|
"This may cause certain multi-modal inputs to fail during inference, even when the input text is short. " # noqa: E501
|
|
"To avoid this, you should increase `max_model_len`, reduce `max_num_seqs`, and/or reduce `mm_counts`.", # noqa: E501
|
|
seq_len,
|
|
total_len,
|
|
str(self._get_mm_num_tokens(mm_inputs)),
|
|
)
|
|
|
|
return DummyEncoderData(encoder_prompt_token_ids)
|
|
|
|
def get_decoder_dummy_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Optional[Mapping[str, int]] = None,
|
|
) -> DummyDecoderData:
|
|
mm_inputs = self._get_dummy_mm_inputs(seq_len, mm_counts)
|
|
|
|
prompt_token_ids = mm_inputs["prompt_token_ids"]
|
|
total_len = len(prompt_token_ids)
|
|
|
|
if total_len < seq_len:
|
|
prompt_token_ids.extend([0] * (seq_len - total_len))
|
|
|
|
return DummyDecoderData(
|
|
prompt_token_ids=prompt_token_ids,
|
|
multi_modal_data=mm_inputs["mm_kwargs"].require_data(),
|
|
multi_modal_placeholders=mm_inputs["mm_placeholders"],
|
|
)
|
|
|
|
def _get_mm_max_tokens(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Optional[Mapping[str, int]] = None,
|
|
mm_embeddings_only: bool = True,
|
|
) -> Mapping[str, int]:
|
|
if mm_counts is None:
|
|
mm_counts = self.get_mm_limits()
|
|
|
|
max_tokens_per_item = self.processing_info.get_mm_max_tokens_per_item(
|
|
seq_len=seq_len,
|
|
mm_counts=mm_counts,
|
|
)
|
|
if max_tokens_per_item is not None:
|
|
return max_tokens_per_item
|
|
|
|
mm_inputs = self._get_dummy_mm_inputs(seq_len, mm_counts)
|
|
return self._get_mm_num_tokens(mm_inputs,
|
|
mm_embeddings_only=mm_embeddings_only)
|
|
|
|
def get_mm_max_contiguous_tokens(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Optional[Mapping[str, int]] = None,
|
|
):
|
|
"""
|
|
Returns the maximum length of the multimodal (image placeholders+text)
|
|
tokens, including any break/text tokens in-between image embeddings.
|
|
|
|
`<im_start> [IMG] [IMG] [IMG] <row_break> [IMG] [IMG] [IMG] <im_end>`
|
|
Returns 9, even when the number of image embeddings is 6.
|
|
|
|
This is important to take into account when profiling and
|
|
initializing the encoder cache size.
|
|
"""
|
|
|
|
return self._get_mm_max_tokens(seq_len,
|
|
mm_counts,
|
|
mm_embeddings_only=False)
|