vllm/tests/kernels/moe/test_flashinfer_moe.py
Fardin Hoque b8c48c5d72
kernels/moe test pruning (#27053)
Signed-off-by: Fardin Hoque <kfhfar@amazon.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-30 12:10:34 +08:00

136 lines
4.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from tests.kernels.moe.utils import make_test_quant_config
from tests.kernels.quantization.nvfp4_utils import (
FLOAT4_E2M1_MAX,
FLOAT8_E4M3_MAX,
dequantize_nvfp4_to_dtype,
)
from tests.kernels.utils import torch_moe
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
FlashInferExperts,
is_valid_flashinfer_cutlass_fused_moe,
)
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
from vllm.model_executor.layers.fused_moe.modular_kernel import FusedMoEModularKernel
from vllm.model_executor.layers.fused_moe.prepare_finalize import (
MoEPrepareAndFinalizeNoEP,
)
from vllm.platforms import current_platform
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe
if not has_flashinfer_cutlass_fused_moe() or not current_platform.has_device_capability(
100
):
pytest.skip(
"Requires flashinfer_cutlass_fused_moe and nvfp4 support",
allow_module_level=True,
)
MNK_FACTORS = [
(2, 1024, 1024),
(2, 3072, 1024),
(2, 3072, 1536),
(64, 1024, 1536),
(64, 3072, 1024),
(64, 2048, 1536),
(224, 1024, 1024),
(224, 1024, 1536),
]
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("e", [40, 64, 256])
@pytest.mark.parametrize("topk", [1, 6, 8])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@torch.inference_mode()
def test_flashinfer_fp4_moe_no_graph(
m: int, n: int, k: int, e: int, topk: int, dtype: torch.dtype
):
current_platform.seed_everything(7)
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
quant_blocksize = 16
w1_q, w2_q, quant_config = make_test_quant_config(
e,
n,
k,
in_dtype=dtype,
quant_dtype="nvfp4",
block_shape=None,
per_act_token_quant=False,
)
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
assert is_valid_flashinfer_cutlass_fused_moe(a, w1_q, w2_q)
flashinfer_experts = FusedMoEModularKernel(
MoEPrepareAndFinalizeNoEP(),
FlashInferExperts(out_dtype=dtype, quant_config=quant_config),
)
flashinfer_output = flashinfer_experts(
hidden_states=a,
w1=w1_q,
w2=w2_q,
topk_weights=topk_weights,
topk_ids=topk_ids,
)
# Reference check:
a_global_scale = (
(FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(a.flatten(), dim=-1)
).to(torch.float32)
a_fp4, a_scale_interleaved = ops.scaled_fp4_quant(a, a_global_scale)
_, m_k = a_fp4.shape
a_in_dtype = dequantize_nvfp4_to_dtype(
a_fp4,
a_scale_interleaved,
a_global_scale,
dtype=a.dtype,
device=a.device,
block_size=quant_blocksize,
)
w1_d = torch.empty((e, 2 * n, k), device="cuda", dtype=dtype)
w2_d = torch.empty((e, k, n), device="cuda", dtype=dtype)
for idx in range(0, e):
w1_d[idx] = dequantize_nvfp4_to_dtype(
w1_q[idx],
quant_config.w1_scale[idx],
(1 / quant_config.g1_alphas[idx]),
dtype=dtype,
device=w1_q.device,
block_size=quant_blocksize,
)
w2_d[idx] = dequantize_nvfp4_to_dtype(
w2_q[idx],
quant_config.w2_scale[idx],
(1 / quant_config.g2_alphas[idx]),
dtype=dtype,
device=w2_q.device,
block_size=quant_blocksize,
)
torch_output = torch_moe(a_in_dtype, w1_d, w2_d, score, topk)
torch.testing.assert_close(
torch_output, flashinfer_output, atol=1e-1, rtol=1e-1
)
if __name__ == "__main__":
test_flashinfer_fp4_moe_no_graph((2, 1024, 1024), 40, 1, torch.half)