vllm/tests/v1/shutdown/test_forward_error.py
Isotr0py 6ac5e06f7c
[Chore] Clean up pytorch helper functions in vllm.utils (#26908)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: isotr0py <2037008807@qq.com>
2025-10-18 09:48:22 -07:00

135 lines
4.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Test that we handle an Error in model forward and shutdown."""
import asyncio
import pytest
from tests.utils import wait_for_gpu_memory_to_clear
from tests.v1.shutdown.utils import (
SHUTDOWN_TEST_THRESHOLD_BYTES,
SHUTDOWN_TEST_TIMEOUT_SEC,
)
from vllm import LLM, AsyncEngineArgs, SamplingParams
from vllm.distributed import get_tensor_model_parallel_rank
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.utils.torch_utils import cuda_device_count_stateless
from vllm.v1.engine.async_llm import AsyncLLM
from vllm.v1.engine.exceptions import EngineDeadError
MODELS = ["hmellor/tiny-random-LlamaForCausalLM"]
def evil_forward(self, *args, **kwargs):
"""Evil forward method that raise an exception after 10 calls."""
NUMBER_OF_GOOD_PASSES = 10
if not hasattr(self, "num_calls"):
self.num_calls = 0
if (
self.num_calls == NUMBER_OF_GOOD_PASSES
and get_tensor_model_parallel_rank() == 0
):
raise Exception("Simulated illegal memory access on Rank 0!")
self.num_calls += 1
return self.model(*args, **kwargs)
@pytest.mark.asyncio
@pytest.mark.parametrize("tensor_parallel_size", [2, 1])
@pytest.mark.parametrize("model", MODELS)
async def test_async_llm_model_error(
monkeypatch, tensor_parallel_size: int, model: str
) -> None:
"""Test that AsyncLLM propagates a forward pass error and frees memory.
AsyncLLM always uses an MP client.
"""
if cuda_device_count_stateless() < tensor_parallel_size:
pytest.skip(reason="Not enough CUDA devices")
# Monkeypatch an error in the model.
monkeypatch.setattr(LlamaForCausalLM, "forward", evil_forward)
engine_args = AsyncEngineArgs(
model=model, enforce_eager=True, tensor_parallel_size=tensor_parallel_size
)
async_llm = AsyncLLM.from_engine_args(engine_args)
async def generate(request_id: str):
generator = async_llm.generate(
"Hello my name is", request_id=request_id, sampling_params=SamplingParams()
)
try:
async for _ in generator:
pass
except Exception as e:
return e
NUM_REQS = 3
tasks = [generate(f"request-{idx}") for idx in range(NUM_REQS)]
outputs = await asyncio.gather(*tasks)
# Every request should get an EngineDeadError.
for output in outputs:
assert isinstance(output, EngineDeadError)
# AsyncLLM should be errored.
assert async_llm.errored
# We should not be able to make another request.
with pytest.raises(EngineDeadError):
async for _ in async_llm.generate(
"Hello my name is", request_id="abc", sampling_params=SamplingParams()
):
raise Exception("We should not get here.")
# Confirm all the processes are cleaned up.
wait_for_gpu_memory_to_clear(
devices=list(range(tensor_parallel_size)),
threshold_bytes=2 * 2**30,
timeout_s=60,
)
# NOTE: shutdown is handled by the API Server if an exception
# occurs, so it is expected that we would need to call this.
async_llm.shutdown()
@pytest.mark.timeout(SHUTDOWN_TEST_TIMEOUT_SEC)
@pytest.mark.parametrize("enable_multiprocessing", [True])
@pytest.mark.parametrize("tensor_parallel_size", [2, 1])
@pytest.mark.parametrize("model", MODELS)
def test_llm_model_error(
monkeypatch, tensor_parallel_size: int, enable_multiprocessing: bool, model: str
) -> None:
"""Test that LLM propagates a forward pass error and frees memory.
TODO(andy) - LLM without multiprocessing; LLM with multiprocessing
and >1 rank
"""
if cuda_device_count_stateless() < tensor_parallel_size:
pytest.skip(reason="Not enough CUDA devices")
with monkeypatch.context() as m:
MP_VALUE = "1" if enable_multiprocessing else "0"
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", MP_VALUE)
# Monkeypatch an error in the model.
m.setattr(LlamaForCausalLM, "forward", evil_forward)
llm = LLM(
model=model, enforce_eager=True, tensor_parallel_size=tensor_parallel_size
)
with pytest.raises(EngineDeadError if enable_multiprocessing else Exception):
llm.generate("Hello my name is Robert and I")
# Confirm all the processes are cleaned up.
wait_for_gpu_memory_to_clear(
devices=list(range(tensor_parallel_size)),
threshold_bytes=SHUTDOWN_TEST_THRESHOLD_BYTES,
)