mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 04:45:01 +08:00
338 lines
11 KiB
Python
338 lines
11 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import torch
|
|
|
|
from vllm.triton_utils import tl, triton
|
|
|
|
AWQ_TRITON_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
|
|
|
|
|
|
@triton.jit
|
|
def awq_dequantize_kernel(
|
|
qweight_ptr, # quantized matrix
|
|
scales_ptr, # scales, per group
|
|
zeros_ptr, # zeros, per group
|
|
group_size, # Should always be one of the supported group sizes
|
|
result_ptr, # Output matrix
|
|
num_cols, # input num cols in qweight
|
|
num_rows, # input num rows in qweight
|
|
BLOCK_SIZE_X: tl.constexpr,
|
|
BLOCK_SIZE_Y: tl.constexpr,
|
|
):
|
|
# Set up the pids.
|
|
pid_x = tl.program_id(axis=0)
|
|
pid_y = tl.program_id(axis=1)
|
|
|
|
# Compute offsets and masks for qweight_ptr.
|
|
offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
|
|
offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
|
|
offsets = num_cols * offsets_y[:, None] + offsets_x[None, :]
|
|
|
|
masks_y = offsets_y < num_rows
|
|
masks_x = offsets_x < num_cols
|
|
|
|
masks = masks_y[:, None] & masks_x[None, :]
|
|
|
|
# Compute offsets and masks for result output ptr.
|
|
result_offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
|
|
result_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(0, BLOCK_SIZE_X * 8)
|
|
result_offsets = (
|
|
8 * num_cols * result_offsets_y[:, None] + result_offsets_x[None, :]
|
|
)
|
|
|
|
result_masks_y = result_offsets_y < num_rows
|
|
result_masks_x = result_offsets_x < num_cols * 8
|
|
result_masks = result_masks_y[:, None] & result_masks_x[None, :]
|
|
|
|
# Load the weights.
|
|
iweights = tl.load(qweight_ptr + offsets, masks, 0.0)
|
|
iweights = tl.interleave(iweights, iweights)
|
|
iweights = tl.interleave(iweights, iweights)
|
|
iweights = tl.interleave(iweights, iweights)
|
|
|
|
# Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
|
|
# that will map given indices to the correct order.
|
|
reverse_awq_order_tensor = (
|
|
(tl.arange(0, 2) * 4)[None, :] + tl.arange(0, 4)[:, None]
|
|
).reshape(8)
|
|
|
|
# Use this to compute a set of shifts that can be used to unpack and
|
|
# reorder the values in iweights and zeros.
|
|
shifts = reverse_awq_order_tensor * 4
|
|
shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_Y * BLOCK_SIZE_X, 8))
|
|
shifts = tl.reshape(shifts, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
|
|
|
|
# Unpack and reorder: shift out the correct 4-bit value and mask.
|
|
iweights = (iweights >> shifts) & 0xF
|
|
|
|
# Compute zero offsets and masks.
|
|
zero_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
|
|
zero_offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
|
|
zero_offsets = num_cols * zero_offsets_y[:, None] + zero_offsets_x[None, :]
|
|
|
|
zero_masks_y = zero_offsets_y < num_rows // group_size
|
|
zero_masks_x = zero_offsets_x < num_cols
|
|
zero_masks = zero_masks_y[:, None] & zero_masks_x[None, :]
|
|
|
|
# Load the zeros.
|
|
zeros = tl.load(zeros_ptr + zero_offsets, zero_masks, 0.0)
|
|
zeros = tl.interleave(zeros, zeros)
|
|
zeros = tl.interleave(zeros, zeros)
|
|
zeros = tl.interleave(zeros, zeros)
|
|
zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
|
|
|
|
# Unpack and reorder: shift out the correct 4-bit value and mask.
|
|
zeros = (zeros >> shifts) & 0xF
|
|
|
|
# Compute scale offsets and masks.
|
|
scale_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
|
|
scale_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(0, BLOCK_SIZE_X * 8)
|
|
scale_offsets = num_cols * 8 * scale_offsets_y[:, None] + scale_offsets_x[None, :]
|
|
scale_masks_y = scale_offsets_y < num_rows // group_size
|
|
scale_masks_x = scale_offsets_x < num_cols * 8
|
|
scale_masks = scale_masks_y[:, None] & scale_masks_x[None, :]
|
|
|
|
# Load the scales.
|
|
scales = tl.load(scales_ptr + scale_offsets, scale_masks, 0.0)
|
|
scales = tl.broadcast_to(scales, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
|
|
|
|
# Dequantize.
|
|
iweights = (iweights - zeros) * scales
|
|
iweights = iweights.to(result_ptr.type.element_ty)
|
|
|
|
# Finally, store.
|
|
tl.store(result_ptr + result_offsets, iweights, result_masks)
|
|
|
|
|
|
@triton.jit
|
|
def awq_gemm_kernel(
|
|
a_ptr,
|
|
b_ptr,
|
|
c_ptr,
|
|
zeros_ptr,
|
|
scales_ptr,
|
|
M,
|
|
N,
|
|
K,
|
|
group_size,
|
|
BLOCK_SIZE_M: tl.constexpr,
|
|
BLOCK_SIZE_N: tl.constexpr,
|
|
BLOCK_SIZE_K: tl.constexpr,
|
|
SPLIT_K: tl.constexpr,
|
|
):
|
|
pid = tl.program_id(axis=0)
|
|
pid_z = tl.program_id(1)
|
|
|
|
# NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
|
|
# num_pid_n = (N + BLOCK_SIZE_N - 1) // BLOCK_SIZE_N
|
|
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
|
|
|
pid_m = pid // num_pid_n
|
|
pid_n = pid % num_pid_n
|
|
|
|
accumulator_dtype = c_ptr.type.element_ty
|
|
|
|
# NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
|
|
# accumulator = tl.arange(0, BLOCK_SIZE_N)
|
|
# accumulator = tl.broadcast_to(accumulator[None, :],
|
|
# (BLOCK_SIZE_M, BLOCK_SIZE_N))
|
|
# accumulator = accumulator & 0x0
|
|
# accumulator = accumulator.to(accumulator_dtype)
|
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=accumulator_dtype)
|
|
|
|
# Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
|
|
# that will map given indices to the correct order.
|
|
reverse_awq_order_tensor = (
|
|
(tl.arange(0, 2) * 4)[None, :] + tl.arange(0, 4)[:, None]
|
|
).reshape(8)
|
|
|
|
# Create the necessary shifts to use to unpack.
|
|
shifts = reverse_awq_order_tensor * 4
|
|
shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_K * (BLOCK_SIZE_N // 8), 8))
|
|
shifts = tl.reshape(shifts, (BLOCK_SIZE_K, BLOCK_SIZE_N))
|
|
|
|
# Offsets and masks.
|
|
offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
masks_am = offsets_am < M
|
|
|
|
offsets_bn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
|
|
masks_bn = offsets_bn < N // 8
|
|
|
|
offsets_zn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
|
|
masks_zn = offsets_zn < N // 8
|
|
|
|
offsets_sn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
masks_sn = offsets_sn < N
|
|
|
|
offsets_k = pid_z * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
|
offsets_a = K * offsets_am[:, None] + offsets_k[None, :]
|
|
offsets_b = (N // 8) * offsets_k[:, None] + offsets_bn[None, :]
|
|
|
|
a_ptrs = a_ptr + offsets_a
|
|
b_ptrs = b_ptr + offsets_b
|
|
|
|
# NOTE: Use this in TRITON_INTERPRET=1 mode instead of tl.cdiv
|
|
# block_offset = BLOCK_SIZE_K * SPLIT_K
|
|
# for k in range(0, (K + block_offset - 1) // (block_offset)):
|
|
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * SPLIT_K)):
|
|
masks_k = offsets_k < K
|
|
masks_a = masks_am[:, None] & masks_k[None, :]
|
|
a = tl.load(a_ptrs, mask=masks_a, other=0.0)
|
|
|
|
masks_b = masks_k[:, None] & masks_bn[None, :]
|
|
b = tl.load(b_ptrs, mask=masks_b, other=0.0)
|
|
b = tl.interleave(b, b)
|
|
b = tl.interleave(b, b)
|
|
b = tl.interleave(b, b)
|
|
|
|
# Dequantize b.
|
|
offsets_szk = (
|
|
BLOCK_SIZE_K * SPLIT_K * k + pid_z * BLOCK_SIZE_K
|
|
) // group_size + tl.arange(0, 1)
|
|
offsets_z = (N // 8) * offsets_szk[:, None] + offsets_zn[None, :]
|
|
masks_zk = offsets_szk < K // group_size
|
|
masks_z = masks_zk[:, None] & masks_zn[None, :]
|
|
zeros_ptrs = zeros_ptr + offsets_z
|
|
zeros = tl.load(zeros_ptrs, mask=masks_z, other=0.0)
|
|
zeros = tl.interleave(zeros, zeros)
|
|
zeros = tl.interleave(zeros, zeros)
|
|
zeros = tl.interleave(zeros, zeros)
|
|
zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_K, BLOCK_SIZE_N))
|
|
|
|
offsets_s = N * offsets_szk[:, None] + offsets_sn[None, :]
|
|
masks_sk = offsets_szk < K // group_size
|
|
masks_s = masks_sk[:, None] & masks_sn[None, :]
|
|
scales_ptrs = scales_ptr + offsets_s
|
|
scales = tl.load(scales_ptrs, mask=masks_s, other=0.0)
|
|
scales = tl.broadcast_to(scales, (BLOCK_SIZE_K, BLOCK_SIZE_N))
|
|
|
|
b = (b >> shifts) & 0xF
|
|
zeros = (zeros >> shifts) & 0xF
|
|
b = (b - zeros) * scales
|
|
b = b.to(c_ptr.type.element_ty)
|
|
|
|
# Accumulate results.
|
|
accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)
|
|
|
|
offsets_k += BLOCK_SIZE_K * SPLIT_K
|
|
a_ptrs += BLOCK_SIZE_K * SPLIT_K
|
|
b_ptrs += BLOCK_SIZE_K * SPLIT_K * (N // 8)
|
|
|
|
c = accumulator.to(c_ptr.type.element_ty)
|
|
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
c_ptrs = c_ptr + pid_z * N * M + N * offs_cm[:, None] + offs_cn[None, :]
|
|
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
|
|
tl.store(c_ptrs, c, mask=c_mask)
|
|
|
|
|
|
# qweights - [K , M // 8], int32
|
|
# scales - [K // G, M ], float16
|
|
# zeros - [K // G, M // 8], int32
|
|
def awq_dequantize_triton(
|
|
qweight: torch.Tensor,
|
|
scales: torch.Tensor,
|
|
zeros: torch.Tensor,
|
|
block_size_x: int = 32,
|
|
block_size_y: int = 32,
|
|
) -> torch.Tensor:
|
|
K = qweight.shape[0]
|
|
M = scales.shape[1]
|
|
group_size = qweight.shape[0] // scales.shape[0]
|
|
|
|
assert K > 0 and M > 0
|
|
assert scales.shape[0] == K // group_size and scales.shape[1] == M
|
|
assert zeros.shape[0] == K // group_size and zeros.shape[1] == M // 8
|
|
assert group_size <= K
|
|
assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
|
|
|
|
# Result tensor:
|
|
# number of rows = same as input tensor
|
|
# number of cols = 8 x input tensor num cols
|
|
result = torch.empty(
|
|
qweight.shape[0],
|
|
qweight.shape[1] * 8,
|
|
device=qweight.device,
|
|
dtype=scales.dtype,
|
|
)
|
|
|
|
Y = qweight.shape[0] # num rows
|
|
X = qweight.shape[1] # num cols
|
|
|
|
grid = lambda META: (
|
|
triton.cdiv(X, META["BLOCK_SIZE_X"]),
|
|
triton.cdiv(Y, META["BLOCK_SIZE_Y"]),
|
|
)
|
|
awq_dequantize_kernel[grid](
|
|
qweight,
|
|
scales,
|
|
zeros,
|
|
group_size,
|
|
result,
|
|
X,
|
|
Y,
|
|
BLOCK_SIZE_X=block_size_x,
|
|
BLOCK_SIZE_Y=block_size_y,
|
|
)
|
|
|
|
return result
|
|
|
|
|
|
# input - [M, K]
|
|
# qweight - [K, N // 8]
|
|
# qzeros - [K // G, N // 8]
|
|
# scales - [K // G, N]
|
|
# split_k_iters - parallelism along K-dimension, int, power of 2.
|
|
def awq_gemm_triton(
|
|
input: torch.Tensor,
|
|
qweight: torch.Tensor,
|
|
scales: torch.Tensor,
|
|
qzeros: torch.Tensor,
|
|
split_k_iters: int,
|
|
block_size_m: int = 32,
|
|
block_size_n: int = 32,
|
|
block_size_k: int = 32,
|
|
) -> torch.Tensor:
|
|
M, K = input.shape
|
|
N = qweight.shape[1] * 8
|
|
group_size = qweight.shape[0] // qzeros.shape[0]
|
|
|
|
assert N > 0 and K > 0 and M > 0
|
|
assert qweight.shape[0] == K and qweight.shape[1] == N // 8
|
|
assert qzeros.shape[0] == K // group_size and qzeros.shape[1] == N // 8
|
|
assert scales.shape[0] == K // group_size and scales.shape[1] == N
|
|
assert split_k_iters & (split_k_iters - 1) == 0 and split_k_iters != 0
|
|
assert split_k_iters <= 32
|
|
assert group_size <= K
|
|
assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
|
|
|
|
grid = lambda META: (
|
|
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
|
|
split_k_iters,
|
|
)
|
|
|
|
result = torch.zeros((split_k_iters, M, N), dtype=scales.dtype, device=input.device)
|
|
|
|
# A = input, B = qweight, C = result
|
|
# A = M x K, B = K x N, C = M x N
|
|
awq_gemm_kernel[grid](
|
|
input,
|
|
qweight,
|
|
result,
|
|
qzeros,
|
|
scales,
|
|
M,
|
|
N,
|
|
K,
|
|
group_size,
|
|
BLOCK_SIZE_M=block_size_m,
|
|
BLOCK_SIZE_N=block_size_n,
|
|
BLOCK_SIZE_K=block_size_k,
|
|
SPLIT_K=split_k_iters,
|
|
)
|
|
|
|
result = result.sum(0)
|
|
|
|
return result
|