Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

338 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from vllm.triton_utils import tl, triton
AWQ_TRITON_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
@triton.jit
def awq_dequantize_kernel(
qweight_ptr, # quantized matrix
scales_ptr, # scales, per group
zeros_ptr, # zeros, per group
group_size, # Should always be one of the supported group sizes
result_ptr, # Output matrix
num_cols, # input num cols in qweight
num_rows, # input num rows in qweight
BLOCK_SIZE_X: tl.constexpr,
BLOCK_SIZE_Y: tl.constexpr,
):
# Set up the pids.
pid_x = tl.program_id(axis=0)
pid_y = tl.program_id(axis=1)
# Compute offsets and masks for qweight_ptr.
offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
offsets = num_cols * offsets_y[:, None] + offsets_x[None, :]
masks_y = offsets_y < num_rows
masks_x = offsets_x < num_cols
masks = masks_y[:, None] & masks_x[None, :]
# Compute offsets and masks for result output ptr.
result_offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
result_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(0, BLOCK_SIZE_X * 8)
result_offsets = (
8 * num_cols * result_offsets_y[:, None] + result_offsets_x[None, :]
)
result_masks_y = result_offsets_y < num_rows
result_masks_x = result_offsets_x < num_cols * 8
result_masks = result_masks_y[:, None] & result_masks_x[None, :]
# Load the weights.
iweights = tl.load(qweight_ptr + offsets, masks, 0.0)
iweights = tl.interleave(iweights, iweights)
iweights = tl.interleave(iweights, iweights)
iweights = tl.interleave(iweights, iweights)
# Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
# that will map given indices to the correct order.
reverse_awq_order_tensor = (
(tl.arange(0, 2) * 4)[None, :] + tl.arange(0, 4)[:, None]
).reshape(8)
# Use this to compute a set of shifts that can be used to unpack and
# reorder the values in iweights and zeros.
shifts = reverse_awq_order_tensor * 4
shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_Y * BLOCK_SIZE_X, 8))
shifts = tl.reshape(shifts, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
# Unpack and reorder: shift out the correct 4-bit value and mask.
iweights = (iweights >> shifts) & 0xF
# Compute zero offsets and masks.
zero_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
zero_offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
zero_offsets = num_cols * zero_offsets_y[:, None] + zero_offsets_x[None, :]
zero_masks_y = zero_offsets_y < num_rows // group_size
zero_masks_x = zero_offsets_x < num_cols
zero_masks = zero_masks_y[:, None] & zero_masks_x[None, :]
# Load the zeros.
zeros = tl.load(zeros_ptr + zero_offsets, zero_masks, 0.0)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
# Unpack and reorder: shift out the correct 4-bit value and mask.
zeros = (zeros >> shifts) & 0xF
# Compute scale offsets and masks.
scale_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
scale_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(0, BLOCK_SIZE_X * 8)
scale_offsets = num_cols * 8 * scale_offsets_y[:, None] + scale_offsets_x[None, :]
scale_masks_y = scale_offsets_y < num_rows // group_size
scale_masks_x = scale_offsets_x < num_cols * 8
scale_masks = scale_masks_y[:, None] & scale_masks_x[None, :]
# Load the scales.
scales = tl.load(scales_ptr + scale_offsets, scale_masks, 0.0)
scales = tl.broadcast_to(scales, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
# Dequantize.
iweights = (iweights - zeros) * scales
iweights = iweights.to(result_ptr.type.element_ty)
# Finally, store.
tl.store(result_ptr + result_offsets, iweights, result_masks)
@triton.jit
def awq_gemm_kernel(
a_ptr,
b_ptr,
c_ptr,
zeros_ptr,
scales_ptr,
M,
N,
K,
group_size,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
SPLIT_K: tl.constexpr,
):
pid = tl.program_id(axis=0)
pid_z = tl.program_id(1)
# NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
# num_pid_n = (N + BLOCK_SIZE_N - 1) // BLOCK_SIZE_N
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // num_pid_n
pid_n = pid % num_pid_n
accumulator_dtype = c_ptr.type.element_ty
# NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
# accumulator = tl.arange(0, BLOCK_SIZE_N)
# accumulator = tl.broadcast_to(accumulator[None, :],
# (BLOCK_SIZE_M, BLOCK_SIZE_N))
# accumulator = accumulator & 0x0
# accumulator = accumulator.to(accumulator_dtype)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=accumulator_dtype)
# Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
# that will map given indices to the correct order.
reverse_awq_order_tensor = (
(tl.arange(0, 2) * 4)[None, :] + tl.arange(0, 4)[:, None]
).reshape(8)
# Create the necessary shifts to use to unpack.
shifts = reverse_awq_order_tensor * 4
shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_K * (BLOCK_SIZE_N // 8), 8))
shifts = tl.reshape(shifts, (BLOCK_SIZE_K, BLOCK_SIZE_N))
# Offsets and masks.
offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
masks_am = offsets_am < M
offsets_bn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
masks_bn = offsets_bn < N // 8
offsets_zn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
masks_zn = offsets_zn < N // 8
offsets_sn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
masks_sn = offsets_sn < N
offsets_k = pid_z * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offsets_a = K * offsets_am[:, None] + offsets_k[None, :]
offsets_b = (N // 8) * offsets_k[:, None] + offsets_bn[None, :]
a_ptrs = a_ptr + offsets_a
b_ptrs = b_ptr + offsets_b
# NOTE: Use this in TRITON_INTERPRET=1 mode instead of tl.cdiv
# block_offset = BLOCK_SIZE_K * SPLIT_K
# for k in range(0, (K + block_offset - 1) // (block_offset)):
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * SPLIT_K)):
masks_k = offsets_k < K
masks_a = masks_am[:, None] & masks_k[None, :]
a = tl.load(a_ptrs, mask=masks_a, other=0.0)
masks_b = masks_k[:, None] & masks_bn[None, :]
b = tl.load(b_ptrs, mask=masks_b, other=0.0)
b = tl.interleave(b, b)
b = tl.interleave(b, b)
b = tl.interleave(b, b)
# Dequantize b.
offsets_szk = (
BLOCK_SIZE_K * SPLIT_K * k + pid_z * BLOCK_SIZE_K
) // group_size + tl.arange(0, 1)
offsets_z = (N // 8) * offsets_szk[:, None] + offsets_zn[None, :]
masks_zk = offsets_szk < K // group_size
masks_z = masks_zk[:, None] & masks_zn[None, :]
zeros_ptrs = zeros_ptr + offsets_z
zeros = tl.load(zeros_ptrs, mask=masks_z, other=0.0)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_K, BLOCK_SIZE_N))
offsets_s = N * offsets_szk[:, None] + offsets_sn[None, :]
masks_sk = offsets_szk < K // group_size
masks_s = masks_sk[:, None] & masks_sn[None, :]
scales_ptrs = scales_ptr + offsets_s
scales = tl.load(scales_ptrs, mask=masks_s, other=0.0)
scales = tl.broadcast_to(scales, (BLOCK_SIZE_K, BLOCK_SIZE_N))
b = (b >> shifts) & 0xF
zeros = (zeros >> shifts) & 0xF
b = (b - zeros) * scales
b = b.to(c_ptr.type.element_ty)
# Accumulate results.
accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)
offsets_k += BLOCK_SIZE_K * SPLIT_K
a_ptrs += BLOCK_SIZE_K * SPLIT_K
b_ptrs += BLOCK_SIZE_K * SPLIT_K * (N // 8)
c = accumulator.to(c_ptr.type.element_ty)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + pid_z * N * M + N * offs_cm[:, None] + offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# qweights - [K , M // 8], int32
# scales - [K // G, M ], float16
# zeros - [K // G, M // 8], int32
def awq_dequantize_triton(
qweight: torch.Tensor,
scales: torch.Tensor,
zeros: torch.Tensor,
block_size_x: int = 32,
block_size_y: int = 32,
) -> torch.Tensor:
K = qweight.shape[0]
M = scales.shape[1]
group_size = qweight.shape[0] // scales.shape[0]
assert K > 0 and M > 0
assert scales.shape[0] == K // group_size and scales.shape[1] == M
assert zeros.shape[0] == K // group_size and zeros.shape[1] == M // 8
assert group_size <= K
assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
# Result tensor:
# number of rows = same as input tensor
# number of cols = 8 x input tensor num cols
result = torch.empty(
qweight.shape[0],
qweight.shape[1] * 8,
device=qweight.device,
dtype=scales.dtype,
)
Y = qweight.shape[0] # num rows
X = qweight.shape[1] # num cols
grid = lambda META: (
triton.cdiv(X, META["BLOCK_SIZE_X"]),
triton.cdiv(Y, META["BLOCK_SIZE_Y"]),
)
awq_dequantize_kernel[grid](
qweight,
scales,
zeros,
group_size,
result,
X,
Y,
BLOCK_SIZE_X=block_size_x,
BLOCK_SIZE_Y=block_size_y,
)
return result
# input - [M, K]
# qweight - [K, N // 8]
# qzeros - [K // G, N // 8]
# scales - [K // G, N]
# split_k_iters - parallelism along K-dimension, int, power of 2.
def awq_gemm_triton(
input: torch.Tensor,
qweight: torch.Tensor,
scales: torch.Tensor,
qzeros: torch.Tensor,
split_k_iters: int,
block_size_m: int = 32,
block_size_n: int = 32,
block_size_k: int = 32,
) -> torch.Tensor:
M, K = input.shape
N = qweight.shape[1] * 8
group_size = qweight.shape[0] // qzeros.shape[0]
assert N > 0 and K > 0 and M > 0
assert qweight.shape[0] == K and qweight.shape[1] == N // 8
assert qzeros.shape[0] == K // group_size and qzeros.shape[1] == N // 8
assert scales.shape[0] == K // group_size and scales.shape[1] == N
assert split_k_iters & (split_k_iters - 1) == 0 and split_k_iters != 0
assert split_k_iters <= 32
assert group_size <= K
assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
grid = lambda META: (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
split_k_iters,
)
result = torch.zeros((split_k_iters, M, N), dtype=scales.dtype, device=input.device)
# A = input, B = qweight, C = result
# A = M x K, B = K x N, C = M x N
awq_gemm_kernel[grid](
input,
qweight,
result,
qzeros,
scales,
M,
N,
K,
group_size,
BLOCK_SIZE_M=block_size_m,
BLOCK_SIZE_N=block_size_n,
BLOCK_SIZE_K=block_size_k,
SPLIT_K=split_k_iters,
)
result = result.sum(0)
return result