Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

372 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (
LinearBase,
LinearMethodBase,
UnquantizedLinearMethod,
)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
GPTQ_MARLIN_MAX_PARALLEL,
GPTQ_MARLIN_MIN_THREAD_N,
marlin_make_empty_g_idx,
marlin_permute_bias,
marlin_permute_scales,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import gptq_pack
from vllm.model_executor.parameter import (
BasevLLMParameter,
GroupQuantScaleParameter,
PackedvLLMParameter,
)
from vllm.scalar_type import scalar_types
logger = init_logger(__name__)
class HQQMarlinConfig(QuantizationConfig):
"""Config class for HQQ Marlin"""
def __init__(
self,
weight_bits: int,
group_size: int,
skip_modules: list[str] | None = None,
) -> None:
super().__init__()
assert group_size == 64, "The only supported HQQ group size is currently 64."
assert weight_bits == 4, (
"The only supported HQQ quantization bitsize is currently 4."
)
self.weight_bits = weight_bits
self.group_size = group_size
self.pack_factor = 32 // weight_bits # packed into int32 in GPTQ format
self.quant_type = scalar_types.uint4
self.skip_modules = skip_modules
def __repr__(self) -> str:
return (
f"HQQMarlinConfig(quant_type={self.quant_type}, "
f"group_size={self.group_size})"
)
@classmethod
def get_name(cls) -> QuantizationMethods:
return "hqq"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "HQQMarlinConfig":
wq_params = config["quant_config"]["weight_quant_params"]
weight_bits = cls.get_from_keys(wq_params, ["nbits"])
group_size = cls.get_from_keys(wq_params, ["group_size"])
skip_modules = config["skip_modules"]
return cls(weight_bits, group_size, skip_modules)
def is_layer_skipped(self, prefix: str) -> bool:
# Split the prefix into its dot-separated components
components = prefix.split(".")
# Check if any of the skip modules exactly matches any component
return self.skip_modules is not None and any(
module_name in components for module_name in self.skip_modules
)
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
if self.is_layer_skipped(prefix):
return UnquantizedLinearMethod()
return HQQMarlinMethod(self)
return None
# Empty HQQ parameter, will be ignored during loading
class HQQEmptyParameter(BasevLLMParameter):
def load_merged_column_weight(self, loaded_weight: torch.Tensor, **kwargs):
pass
def load_row_parallel_weight(self, loaded_weight: torch.Tensor):
pass
def load_qkv_weight(self, loaded_weight: torch.Tensor, **kwargs):
pass
def error_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
raise ValueError("No loader provided for HQQ parameter!")
# HQQ packing creates issues with sharding - therefore, prior to loading, we
# repack to GPTQ. We also reshape the weights to their proper GPTQ shape.
class HQQweightParameter(PackedvLLMParameter):
# unpack function from https://github.com/mobiusml/hqq
def unpack_4bit_u8(self, W_q: torch.Tensor) -> torch.Tensor: # uint8/2 > uint8
assert self.weight_bits == 4, "Unsupported quant bitsize (must be 4)"
dtype = torch.uint8
step = W_q.shape[0]
tmp = torch.empty([2 * step, W_q.shape[1]], dtype=dtype, device=W_q.device)
tmp[:step] = (W_q & 0b11110000) >> 4
tmp[step:] = W_q & 0b00001111
return tmp
def __init__(self, packed_factor: int, packed_dim: int, weight_bits: int, **kwargs):
super().__init__(packed_factor, packed_dim, None, **kwargs)
self.weight_bits = weight_bits
self.input_shape = self.shape[self.input_dim] * self.packed_factor
self.output_shape = self.shape[self.output_dim]
def load_merged_column_weight(self, loaded_weight: torch.Tensor, **kwargs):
loaded_weight = self.unpack_4bit_u8(loaded_weight)
loaded_weight = loaded_weight.reshape(-1, self.input_shape).transpose(1, 0)
loaded_weight = gptq_pack(
loaded_weight,
self.weight_bits,
loaded_weight.shape[0],
loaded_weight.shape[1],
)
super().load_merged_column_weight(loaded_weight, **kwargs)
def load_row_parallel_weight(self, loaded_weight: torch.Tensor):
loaded_weight = self.unpack_4bit_u8(loaded_weight)
loaded_weight = loaded_weight.reshape(self.output_shape, -1).transpose(1, 0)
loaded_weight = gptq_pack(
loaded_weight,
self.weight_bits,
loaded_weight.shape[0],
loaded_weight.shape[1],
)
super().load_row_parallel_weight(loaded_weight)
def load_qkv_weight(self, loaded_weight: torch.Tensor, **kwargs):
loaded_weight = self.unpack_4bit_u8(loaded_weight)
loaded_weight = loaded_weight.reshape(-1, self.input_shape).transpose(1, 0)
loaded_weight = gptq_pack(
loaded_weight,
self.weight_bits,
loaded_weight.shape[0],
loaded_weight.shape[1],
)
super().load_qkv_weight(loaded_weight, **kwargs)
# Zero points and scales in HQQ must also be reshaped to correspond to W_q's
# GPTQ shape (transposed - we transpose them too when processing weights).
class HQQZeroScaleParameter(GroupQuantScaleParameter):
def load_merged_column_weight(self, loaded_weight: torch.Tensor, **kwargs):
loaded_weight = loaded_weight.reshape(-1, self.shape[1])
super().load_merged_column_weight(loaded_weight, **kwargs)
def load_row_parallel_weight(self, loaded_weight: torch.Tensor):
loaded_weight = loaded_weight.reshape(self.shape[0], -1)
super().load_row_parallel_weight(loaded_weight)
def load_qkv_weight(self, loaded_weight: torch.Tensor, **kwargs):
loaded_weight = loaded_weight.reshape(-1, self.shape[1])
super().load_qkv_weight(loaded_weight, **kwargs)
class HQQMarlinMethod(LinearMethodBase):
"""Linear method for HQQ Marlin."""
def __init__(
self,
quant_config: HQQMarlinConfig,
):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
self.output_size_per_partition = sum(output_partition_sizes)
self.input_size_per_partition = input_size_per_partition
weight_loader = extra_weight_attrs.get("weight_loader", error_loader)
self.scales_and_zp_size = (
input_size_per_partition // self.quant_config.group_size
)
qweight = HQQweightParameter(
data=torch.empty(
self.input_size_per_partition // self.quant_config.pack_factor,
self.output_size_per_partition,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=0,
packed_factor=self.quant_config.pack_factor,
weight_bits=self.quant_config.weight_bits,
weight_loader=weight_loader,
)
zeros = HQQZeroScaleParameter(
data=torch.empty(
self.output_size_per_partition,
self.scales_and_zp_size,
dtype=params_dtype,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
scales = HQQZeroScaleParameter(
data=torch.empty(
self.output_size_per_partition,
self.scales_and_zp_size,
dtype=params_dtype,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("W_q", qweight)
layer.register_parameter("zero", zeros)
layer.register_parameter("scale", scales)
# Ignore extra parameters in the HQQ model.
# To be added as needed.
ignore_parameters = (
"axis",
"channel_wise",
"compute_dtype",
"encoded_state_dict",
"group_size",
"nbits",
"offload_meta",
"optimize",
"packing",
"quant_scale",
"quant_zero",
"round_zero",
"shape",
"stores_quant_config",
"unpack_view_dtype",
"view_as_float",
)
for name in ignore_parameters:
layer.register_parameter(
name,
HQQEmptyParameter(data=torch.empty(0), weight_loader=weight_loader),
)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
dev = layer.W_q.device
# Repack to Marlin
sort_indices = torch.empty(0, dtype=torch.int, device=dev)
marlin_w_q = ops.gptq_marlin_repack(
layer.W_q,
sort_indices,
self.input_size_per_partition,
self.output_size_per_partition,
self.quant_config.weight_bits,
).to(dev)
marlin_s = marlin_permute_scales(
layer.scale.transpose(1, 0),
self.input_size_per_partition,
self.output_size_per_partition,
self.quant_config.group_size,
).to(dev)
marlin_zp = marlin_permute_scales(
layer.zero.transpose(1, 0),
self.input_size_per_partition,
self.output_size_per_partition,
self.quant_config.group_size,
).to(dev)
layer.g_idx = marlin_make_empty_g_idx(dev)
layer.g_idx_sort_indices = marlin_make_empty_g_idx(dev)
layer.marlin_qweight = marlin_w_q
layer.marlin_zeros = marlin_zp
layer.marlin_scales = marlin_s
if hasattr(layer, "bias") and layer.bias is not None:
layer.bias.data = marlin_permute_bias(layer.bias)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
workspace = MarlinWorkspace(
self.output_size_per_partition,
GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MAX_PARALLEL,
)
scales = layer.marlin_scales
zeros = layer.marlin_zeros
orig_type = x.dtype
if orig_type != torch.float16:
x = x.to(torch.float16)
scales = scales.to(torch.float16)
zeros = zeros.to(torch.float16)
marlin_out = ops.gptq_marlin_gemm(
x,
None,
layer.marlin_qweight,
bias,
scales,
None,
zeros,
layer.g_idx,
layer.g_idx_sort_indices,
workspace.scratch,
scalar_types.uint4,
x.shape[0],
self.output_size_per_partition,
self.input_size_per_partition,
True, # is_k_full
False, # use atomic add
True, # use 32-bit reduce
True, # use float zp
)
if orig_type != torch.float16:
marlin_out = marlin_out.to(orig_type)
return marlin_out