Michael Goin 7e0ef4084a
[CI Failure] Fix torchao dep failure for Quantization Test (#26824)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-10-14 16:41:43 -07:00

655 lines
21 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright © 2025, Oracle and/or its affiliates.
import os
from collections.abc import Callable
from typing import Any, Optional
import numpy as np
import torch
from torch.nn.parameter import Parameter
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEConfig,
FusedMoEQuantConfig,
)
from vllm.model_executor.layers.fused_moe.fused_marlin_moe import fused_marlin_moe
from vllm.model_executor.layers.fused_moe.layer import FusedMoE, FusedMoEMethodBase
from vllm.model_executor.layers.linear import (
LinearBase,
LinearMethodBase,
set_weight_attrs,
)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from vllm.model_executor.layers.quantization.utils import replace_parameter
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
apply_rtn_marlin_linear,
marlin_make_workspace_new,
)
from vllm.scalar_type import scalar_types
logger = init_logger(__name__)
"""By default, use 8 bit as target precision, but it can be
overridden by setting the RTN_NUM_BITS envvar
"""
NUM_BITS = os.getenv("RTN_NUM_BITS", "8")
"""By default, use group size of 128 parameters, but it can be
overridden by setting the RTN_GROUP_SIZE envvar
"""
GROUP_SIZE = os.getenv("RTN_GROUP_SIZE", "128")
"""Global Marlin workspace shared by all modules
"""
workspace = None
class RTNConfig(QuantizationConfig):
"""Config class for RTN."""
def __init__(
self,
weight_bits: int = int(NUM_BITS),
group_size: int = int(GROUP_SIZE),
) -> None:
self.weight_bits = weight_bits
self.group_size = group_size
if self.weight_bits != 4 and self.weight_bits != 8:
raise ValueError(
"Currently, only 4-bit or 8-bit weight quantization is "
f"supported for RTN, but got {self.weight_bits} bits."
)
self.quant_type = (
scalar_types.uint8b128 if self.weight_bits == 8 else scalar_types.uint4b8
)
def __repr__(self) -> str:
return (
f"RTNConfig(weight_bits={self.weight_bits}, group_size={self.group_size})"
)
@classmethod
def get_name(cls) -> QuantizationMethods:
return "rtn"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return []
@classmethod
def from_config(cls, config: dict[str, Any]) -> "RTNConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
return cls(weight_bits, group_size)
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
return RTNLinearMethod(self)
elif isinstance(layer, FusedMoE):
return RTNMoEMethod(self, layer.moe_config)
return None
class RTNTensor:
"""A wrapper over Tensor that enables quantization on-the-fly by
overloading the copy_ method.
"""
def __init__(
self, data: torch.Tensor, scale: torch.Tensor, quant_config: RTNConfig
) -> None:
self.data = data
self.scale = scale
self.quant_config = quant_config
def narrow(self, dim, start, length):
factor = 1 if self.quant_config.weight_bits == 8 else 2
return RTNTensor(
self.data.narrow(dim, start // factor, length // factor),
self.scale.narrow(dim, start, length),
self.quant_config,
)
def __getitem__(self, key):
return RTNTensor(self.data[key], self.scale[key], self.quant_config)
@property
def shape(self):
shape = self.data.shape
factor = 1 if self.quant_config.weight_bits == 8 else 2
batch_present = len(shape) == 3
if batch_present:
return torch.Size((shape[0], shape[1] * factor, shape[2]))
else:
return torch.Size((shape[0] * factor, shape[1]))
def copy_(self, loaded_weight: torch.Tensor) -> None:
qweight, weight_scale = rtn_quantize(
loaded_weight.cuda(),
self.quant_config.weight_bits,
self.quant_config.group_size,
)
self.data.copy_(qweight)
self.scale.data.copy_(weight_scale)
class RTNParameter(Parameter):
"""A wrapper over Parameter that returns RTNTensor (a wrapper over Tensor)
when its data is accessed. We need this wrapper for the data loading phase
only, so we can intercept a weight copying function (torch.Tensor.copy_)
and apply quantization on-the-fly.
"""
def __new__(cls, data: torch.Tensor, **kwargs):
return super().__new__(cls, data=data, requires_grad=False)
def __init__(
self, data: torch.Tensor, scale: torch.Tensor, quant_config: RTNConfig
) -> None:
self.scale = scale
self.quant_config = quant_config
@property
def data(self):
return RTNTensor(super().data, self.scale, self.quant_config)
class RTNLinearMethod(LinearMethodBase):
"""Linear method for RTN.
Args:
quant_config: The RTN quantization config.
"""
def __init__(self, quant_config: RTNConfig):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
output_size_per_partition = sum(output_partition_sizes)
num_groups_per_col = (
input_size_per_partition // self.quant_config.group_size
if self.quant_config.group_size != -1
else 1
)
scale = Parameter(
torch.empty(
output_size_per_partition, num_groups_per_col, dtype=params_dtype
),
requires_grad=False,
)
factor = 1 if self.quant_config.weight_bits == 8 else 2
weight = RTNParameter(
data=torch.empty(
output_size_per_partition // factor,
input_size_per_partition,
dtype=torch.uint8,
),
scale=scale,
quant_config=self.quant_config,
)
layer.register_parameter("weight", weight)
set_weight_attrs(
weight,
{
**extra_weight_attrs,
"input_dim": 1,
"output_dim": 0,
},
)
layer.register_parameter("scale", scale)
layer.output_size_per_partition = output_size_per_partition
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
"""Repack weights and scales for Marlin kernels."""
weight_bits = self.quant_config.weight_bits
weight, scale = repack_weights(layer.weight, layer.scale, weight_bits)
replace_parameter(layer, "weight", weight)
replace_parameter(layer, "scale", scale)
init_workspace(layer.weight.device)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
return apply_rtn_marlin_linear(
input=x,
weight=layer.weight,
weight_scale=layer.scale,
workspace=workspace,
quant_type=self.quant_config.quant_type,
output_size_per_partition=layer.output_size_per_partition,
input_size_per_partition=layer.input_size_per_partition,
bias=bias,
)
class RTNMoEMethod(FusedMoEMethodBase):
def __init__(self, quant_config: RTNConfig, moe: FusedMoEConfig):
super().__init__(moe)
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
factor = 1 if self.quant_config.weight_bits == 8 else 2
# Fused gate_up_proj (column parallel)
num_groups_per_col = (
hidden_size // self.quant_config.group_size
if self.quant_config.group_size != -1
else 1
)
w13_scale = Parameter(
torch.empty(
num_experts,
2 * intermediate_size_per_partition,
num_groups_per_col,
dtype=params_dtype,
),
requires_grad=False,
)
layer.register_parameter("w13_scale", w13_scale)
w13_weight = RTNParameter(
data=torch.empty(
num_experts,
2 * intermediate_size_per_partition // factor,
hidden_size,
dtype=torch.uint8,
),
scale=w13_scale,
quant_config=self.quant_config,
)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
# down_proj (row parallel)
num_groups_per_col = (
intermediate_size_per_partition // self.quant_config.group_size
if self.quant_config.group_size != -1
else 1
)
w2_scale = Parameter(
torch.zeros(
num_experts, hidden_size, num_groups_per_col, dtype=params_dtype
),
requires_grad=False,
)
layer.register_parameter("w2_scale", w2_scale)
w2_weight = RTNParameter(
data=torch.empty(
num_experts,
hidden_size // factor,
intermediate_size_per_partition,
dtype=torch.uint8,
),
scale=w2_scale,
quant_config=self.quant_config,
)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
"""Repack weights and scales for Marlin kernels."""
weight_bits = self.quant_config.weight_bits
w13_weight, w13_scale = repack_weights(
layer.w13_weight, layer.w13_scale, weight_bits
)
replace_parameter(layer, "w13_weight", w13_weight)
replace_parameter(layer, "w13_scale", w13_scale)
w2_weight, w2_scale = repack_weights(
layer.w2_weight, layer.w2_scale, weight_bits
)
replace_parameter(layer, "w2_weight", w2_weight)
replace_parameter(layer, "w2_scale", w2_scale)
init_workspace(layer.w13_weight.device)
def get_fused_moe_quant_config(
self, layer: torch.nn.Module
) -> FusedMoEQuantConfig | None:
return None
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: int | None = None,
num_expert_group: int | None = None,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
custom_routing_function: Callable | None = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: torch.Tensor | None = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: torch.Tensor | None = None,
logical_to_physical_map: torch.Tensor | None = None,
logical_replica_count: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
assert self.fused_experts is None
if enable_eplb:
raise NotImplementedError("EPLB not supported for `RTNMoEMethod` yet.")
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype,
)
return fused_marlin_moe(
x,
layer.w13_weight,
layer.w2_weight,
getattr(layer, "w13_bias", None),
getattr(layer, "w2_bias", None),
layer.w13_scale,
layer.w2_scale,
router_logits,
topk_weights,
topk_ids,
quant_type_id=self.quant_config.quant_type.id,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
workspace=workspace,
)
def rtn_quantize(
tensor: torch.Tensor, num_bits: int, group_size: int
) -> tuple[torch.Tensor, torch.Tensor]:
"""Quantize a tensor using per-group static scaling factor.
Args:
tensor: The input tensor.
num_bits: Target precision for the result (supported values are
8 or 4).
group_size: Quantization granularity.
If equal to -1, each row in the input tensor is treated
as one group.
"""
batch_present = len(tensor.shape) == 3
if not batch_present:
tensor = tensor.unsqueeze(0)
q_range = 2**num_bits
num_groups = (
tensor.shape[1] * tensor.shape[2] // group_size
if group_size != -1
else tensor.shape[1]
)
"""Calculate a scaling factor per input group.
"""
input_flat = tensor.reshape(tensor.shape[0], num_groups, -1)
input_min = torch.min(input_flat, dim=2, keepdim=True)[0]
input_max = torch.max(input_flat, dim=2, keepdim=True)[0]
input_max_abs = torch.max(input_min.abs(), input_max.abs())
scale = input_max_abs * 2.0 / (q_range - 1)
"""Scale each input group, round to the nearest integer, shift
the range and truncate.
"""
scaled_input = input_flat / scale
scaled_input = scaled_input.round()
scaled_input += q_range // 2
scaled_input = scaled_input.clamp(0, q_range - 1)
scale = scale.reshape(tensor.shape[0], tensor.shape[1], -1).contiguous()
inputs_q = scaled_input.reshape(tensor.shape).to(torch.uint8)
inputs_q = inputs_q.contiguous()
if num_bits == 4:
"""Pack two 4-bit values into each byte.
"""
inputs_q = (inputs_q[:, :, 1::2] << 4) | (inputs_q[:, :, ::2] & 0xF)
inputs_q = inputs_q.reshape(
tensor.shape[0], tensor.shape[1] // 2, tensor.shape[2]
)
inputs_q = inputs_q.contiguous()
if not batch_present:
inputs_q = inputs_q.squeeze(0)
scale = scale.squeeze(0)
return inputs_q, scale
def rtn_dequantize(tensor: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
"""Dequantize a tensor using per-group static scaling factors.
Args:
tensor: The input tensor.
scale: The tensor with per-group scale factors.
"""
batch_present = len(tensor.shape) == 3
if not batch_present:
tensor = tensor.unsqueeze(0)
scale = scale.unsqueeze(0)
num_groups = scale.size(1) * scale.size(2)
batch, input_dim, output_dim = tensor.shape
num_bits = 8 if input_dim == scale.size(1) else 4
q_range = 2**num_bits
if num_bits == 4:
input_dim *= 2
data = torch.empty(
(batch, input_dim, output_dim), dtype=scale.dtype, device=tensor.device
)
if num_bits == 8:
data.copy_(tensor)
data -= q_range // 2
else:
"""Unpack two 4-bit values from each byte.
"""
tensor = tensor.reshape(batch, input_dim, output_dim // 2)
for i in range(2):
data[:, :, i::2] = ((tensor << 4 * (1 - i)) >> 4).to(
torch.int8
) - q_range // 2
"""Scale each input group with its scaling factor.
"""
scale = scale.reshape(batch, num_groups, -1)
data = data.reshape(batch, num_groups, -1)
data = torch.mul(data, scale)
input_deq = data.reshape((batch, input_dim, output_dim)).contiguous()
if not batch_present:
input_deq = input_deq.squeeze(0)
return input_deq
def _get_perms():
perm = []
for i in range(32):
perm1 = []
col = i // 4
for block in [0, 1]:
for row in [
2 * (i % 4),
2 * (i % 4) + 1,
2 * (i % 4 + 4),
2 * (i % 4 + 4) + 1,
]:
perm1.append(16 * row + col + 8 * block)
for j in range(4):
perm.extend([p + 256 * j for p in perm1])
perm_arr = np.array(perm)
interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7])
perm_arr = perm_arr.reshape((-1, 8))[:, interleave].ravel()
perm_tensor = torch.from_numpy(perm_arr)
scale_perm = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single = []
for i in range(4):
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return perm_tensor, scale_perm, scale_perm_single
_perm, _scale_perm, _scale_perm_single = _get_perms()
def pack_for_marlin(weight, scale, qbits):
batch = weight.shape[0]
n = weight.size(1)
k = weight.size(2)
groupsize = k // scale.size(2)
tile = 16
s = scale.permute(0, 2, 1) # transpose
w = weight.permute(0, 2, 1) # transpose
if groupsize != k:
w = w.reshape((batch, -1, groupsize, n))
w = w.permute(0, 2, 1, 3)
w = w.reshape((batch, groupsize, -1))
s = s.reshape((batch, 1, -1))
if groupsize != k:
w = w.reshape((batch, groupsize, -1, n))
w = w.permute(0, 2, 1, 3)
w = w.reshape((batch, k, n)).contiguous()
s = s.reshape((batch, -1, len(_scale_perm)))[:, :, _scale_perm]
else:
s = s.reshape((batch, -1, len(_scale_perm_single)))[:, :, _scale_perm_single]
s = s.reshape((batch, -1, n)).contiguous()
w = w.reshape((batch, k // tile, tile, n // tile, tile))
w = w.permute((0, 1, 3, 2, 4))
w = w.reshape((batch, k // tile, n * tile))
res = w
res = res.reshape((batch, -1, _perm.numel()))[:, :, _perm].reshape(res.shape)
if qbits == 4:
q = torch.zeros(
(batch, res.shape[1], res.shape[2] // 2), dtype=torch.int8, device=w.device
)
for i in range(2):
q |= res[:, :, i::2] << 4 * i
q = q.reshape(batch, -1, n).contiguous()
else:
q = res.clone()
q[:, :, 2::8] = res[:, :, 4::8]
q[:, :, 3::8] = res[:, :, 5::8]
q[:, :, 4::8] = res[:, :, 2::8]
q[:, :, 5::8] = res[:, :, 3::8]
q = q.reshape(batch, -1, n).to(torch.int8).contiguous()
return q, s
def repack_8bit_into_32bit(input):
output = torch.zeros(
(input.shape[0], input.shape[1], input.shape[2] // 4),
dtype=torch.int32,
device=input.device,
)
for i in range(4):
output |= (input[:, :, i::4] & 0xFF).to(torch.int32) << 8 * i
return output
def repack_weights(qweight, scale, weight_bits):
batch_present = len(qweight.shape) == 3
if not batch_present:
qweight = qweight.unsqueeze(0)
scale = scale.unsqueeze(0)
if weight_bits == 4:
"""Unpack two 4-bit values from each byte.
"""
qweight_unpacked = torch.empty(
(qweight.shape[0], qweight.shape[1] * 2, qweight.shape[2]),
dtype=torch.uint8,
device=qweight.device,
)
for i in range(2):
qweight_unpacked[:, :, i::2] = ((qweight << 4 * (1 - i)) >> 4).reshape(
qweight.shape[0], qweight.shape[1] * 2, qweight.shape[2] // 2
)
else:
qweight_unpacked = qweight
qweight_packed, scale_packed = pack_for_marlin(qweight_unpacked, scale, weight_bits)
"""Marlin kernels expect tensors in int32 format in a certain shape
"""
qweight_repacked = repack_8bit_into_32bit(qweight_packed.to(torch.uint8))
qweight_reshaped = qweight_repacked.reshape(
qweight.shape[0], qweight.shape[2] // 16, -1
)
if not batch_present:
qweight_reshaped = qweight_reshaped.squeeze(0)
scale_packed = scale_packed.squeeze(0)
return qweight_reshaped, scale_packed
def init_workspace(device):
global workspace
if workspace is None:
workspace = marlin_make_workspace_new(device, 4)