vllm/benchmarks/kernels/benchmark_moe_align_block_size.py
Jinzhen Lin 879ddb09c3
[Kernel][MoE] optimize moe_align_block_size (#29642)
Signed-off-by: Jinzhen Lin <jinzhen.ljz@antgroup.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-12-07 01:58:47 -08:00

88 lines
2.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import itertools
import torch
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
moe_align_block_size,
)
from vllm.triton_utils import triton
def get_topk_ids(num_tokens: int, num_experts: int, topk: int) -> torch.Tensor:
return torch.stack(
[
torch.randperm(num_experts, dtype=torch.int32, device="cuda")[:topk]
for _ in range(num_tokens)
]
)
# test configurations
num_tokens_range = [1, 16, 256, 4096]
num_experts_range = [16, 64, 224, 256, 280, 512]
topk_range = [1, 2, 8]
ep_size_range = [1, 8]
configs = list(
itertools.product(num_tokens_range, num_experts_range, topk_range, ep_size_range)
)
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["num_tokens", "num_experts", "topk", "ep_size"],
x_vals=configs,
line_arg="provider",
line_vals=["vllm"],
line_names=["vLLM"],
plot_name="moe-align-block-size-performance",
args={},
)
)
def benchmark(num_tokens, num_experts, topk, ep_size, provider):
"""Benchmark function for Triton."""
block_size = 256
torch.cuda.manual_seed_all(0)
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
e_map = None
if ep_size != 1:
local_e = num_experts // ep_size
e_ids = torch.randperm(num_experts, device="cuda", dtype=torch.int32)[:local_e]
e_map = torch.full((num_experts,), -1, device="cuda", dtype=torch.int32)
e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32)
quantiles = [0.5, 0.2, 0.8]
if provider == "vllm":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: moe_align_block_size(
topk_ids, block_size, num_experts, e_map, ignore_invalid_experts=True
),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--num_experts",
type=int,
default=64,
choices=[8, 16, 32, 64, 128, 256],
)
parser.add_argument(
"--topk",
type=int,
default=8,
choices=[2, 4, 8],
help="Top-k value for correctness check.",
)
args = parser.parse_args()
benchmark.run(print_data=True, show_plots=True)