Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

565 lines
18 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# This file is a pure Python wrapper for the NCCL library.
# The main purpose is to use NCCL combined with CUDA graph.
# Before writing this script, we tried the following approach:
# 1. We tried to use `cupy`, it calls NCCL correctly, but `cupy` itself
# often gets stuck when initializing the NCCL communicator.
# 2. We tried to use `torch.distributed`, but `torch.distributed.all_reduce`
# contains many other potential cuda APIs, that are not allowed during
# capturing the CUDA graph. For further details, please check
# https://discuss.pytorch.org/t/pytorch-cudagraph-with-nccl-operation-failed/ .
#
# Another rejected idea is to write a C/C++ binding for NCCL. It is usually
# doable, but we often encounter issues related with nccl versions, and need
# to switch between different versions of NCCL. See
# https://github.com/NVIDIA/nccl/issues/1234 for more details.
# A C/C++ binding is not flexible enough to handle this. It requires
# recompilation of the code every time we want to switch between different
# versions. This current implementation, with a **pure** Python wrapper, is
# more flexible. We can easily switch between different versions of NCCL by
# changing the environment variable `VLLM_NCCL_SO_PATH`, or the `so_file`
# variable in the code.
import ctypes
import platform
from dataclasses import dataclass
from typing import Any, Optional
import torch
from torch.distributed import ReduceOp
from vllm import envs
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import find_nccl_library
logger = init_logger(__name__)
# === export types and functions from nccl to Python ===
# for the original nccl definition, please check
# https://github.com/NVIDIA/nccl/blob/master/src/nccl.h.in
ncclResult_t = ctypes.c_int
ncclComm_t = ctypes.c_void_p
ncclWindow_t = ctypes.c_void_p
class ncclUniqueId(ctypes.Structure):
_fields_ = [("internal", ctypes.c_byte * 128)]
cudaStream_t = ctypes.c_void_p
buffer_type = ctypes.c_void_p
ncclDataType_t = ctypes.c_int
class ncclDataTypeEnum:
ncclInt8 = 0
ncclChar = 0
ncclUint8 = 1
ncclInt32 = 2
ncclInt = 2
ncclUint32 = 3
ncclInt64 = 4
ncclUint64 = 5
ncclFloat16 = 6
ncclHalf = 6
ncclFloat32 = 7
ncclFloat = 7
ncclFloat64 = 8
ncclDouble = 8
ncclBfloat16 = 9
ncclNumTypes = 10
@classmethod
def from_torch(cls, dtype: torch.dtype) -> int:
if dtype == torch.int8:
return cls.ncclInt8
if dtype == torch.uint8:
return cls.ncclUint8
if dtype == torch.int32:
return cls.ncclInt32
if dtype == torch.int64:
return cls.ncclInt64
if dtype == torch.float16:
return cls.ncclFloat16
if dtype == torch.float32:
return cls.ncclFloat32
if dtype == torch.float64:
return cls.ncclFloat64
if dtype == torch.bfloat16:
return cls.ncclBfloat16
raise ValueError(f"Unsupported dtype: {dtype}")
ncclRedOp_t = ctypes.c_int
class ncclRedOpTypeEnum:
ncclSum = 0
ncclProd = 1
ncclMax = 2
ncclMin = 3
ncclAvg = 4
ncclNumOps = 5
@classmethod
def from_torch(cls, op: ReduceOp) -> int:
if op == ReduceOp.SUM:
return cls.ncclSum
if op == ReduceOp.PRODUCT:
return cls.ncclProd
if op == ReduceOp.MAX:
return cls.ncclMax
if op == ReduceOp.MIN:
return cls.ncclMin
if op == ReduceOp.AVG:
return cls.ncclAvg
raise ValueError(f"Unsupported op: {op}")
@dataclass
class Function:
name: str
restype: Any
argtypes: list[Any]
class NCCLLibrary:
exported_functions = [
# const char* ncclGetErrorString(ncclResult_t result)
Function("ncclGetErrorString", ctypes.c_char_p, [ncclResult_t]),
# ncclResult_t ncclGetVersion(int *version);
Function("ncclGetVersion", ncclResult_t, [ctypes.POINTER(ctypes.c_int)]),
# ncclResult_t ncclGetUniqueId(ncclUniqueId* uniqueId);
Function("ncclGetUniqueId", ncclResult_t, [ctypes.POINTER(ncclUniqueId)]),
# ncclResult_t ncclCommInitRank(
# ncclComm_t* comm, int nranks, ncclUniqueId commId, int rank);
# note that ncclComm_t is a pointer type, so the first argument
# is a pointer to a pointer
Function(
"ncclCommInitRank",
ncclResult_t,
[ctypes.POINTER(ncclComm_t), ctypes.c_int, ncclUniqueId, ctypes.c_int],
),
# ncclResult_t ncclAllReduce(
# const void* sendbuff, void* recvbuff, size_t count,
# ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm,
# cudaStream_t stream);
# note that cudaStream_t is a pointer type, so the last argument
# is a pointer
Function(
"ncclAllReduce",
ncclResult_t,
[
buffer_type,
buffer_type,
ctypes.c_size_t,
ncclDataType_t,
ncclRedOp_t,
ncclComm_t,
cudaStream_t,
],
),
# ncclResult_t ncclReduce(
# const void* sendbuff, void* recvbuff, size_t count,
# ncclDataType_t datatype, ncclRedOp_t op, int root,
# ncclComm_t comm, cudaStream_t stream);
# note that cudaStream_t is a pointer type, so the last argument
# is a pointer
Function(
"ncclReduce",
ncclResult_t,
[
buffer_type,
buffer_type,
ctypes.c_size_t,
ncclDataType_t,
ncclRedOp_t,
ctypes.c_int,
ncclComm_t,
cudaStream_t,
],
),
# ncclResult_t ncclAllGather(
# const void* sendbuff, void* recvbuff, size_t count,
# ncclDataType_t datatype, ncclComm_t comm,
# cudaStream_t stream);
# note that cudaStream_t is a pointer type, so the last argument
# is a pointer
Function(
"ncclAllGather",
ncclResult_t,
[
buffer_type,
buffer_type,
ctypes.c_size_t,
ncclDataType_t,
ncclComm_t,
cudaStream_t,
],
),
# ncclResult_t ncclReduceScatter(
# const void* sendbuff, void* recvbuff, size_t count,
# ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm,
# cudaStream_t stream);
# note that cudaStream_t is a pointer type, so the last argument
# is a pointer
Function(
"ncclReduceScatter",
ncclResult_t,
[
buffer_type,
buffer_type,
ctypes.c_size_t,
ncclDataType_t,
ncclRedOp_t,
ncclComm_t,
cudaStream_t,
],
),
# ncclResult_t ncclSend(
# const void* sendbuff, size_t count, ncclDataType_t datatype,
# int dest, ncclComm_t comm, cudaStream_t stream);
Function(
"ncclSend",
ncclResult_t,
[
buffer_type,
ctypes.c_size_t,
ncclDataType_t,
ctypes.c_int,
ncclComm_t,
cudaStream_t,
],
),
# ncclResult_t ncclRecv(
# void* recvbuff, size_t count, ncclDataType_t datatype,
# int src, ncclComm_t comm, cudaStream_t stream);
Function(
"ncclRecv",
ncclResult_t,
[
buffer_type,
ctypes.c_size_t,
ncclDataType_t,
ctypes.c_int,
ncclComm_t,
cudaStream_t,
],
),
# ncclResult_t ncclBroadcast(
# const void* sendbuff, void* recvbuff, size_t count,
# ncclDataType_t datatype, int root, ncclComm_t comm,
# cudaStream_t stream);
Function(
"ncclBroadcast",
ncclResult_t,
[
buffer_type,
buffer_type,
ctypes.c_size_t,
ncclDataType_t,
ctypes.c_int,
ncclComm_t,
cudaStream_t,
],
),
# be cautious! this is a collective call, it will block until all
# processes in the communicator have called this function.
# because Python object destruction can happen in random order,
# it is better not to call it at all.
# ncclResult_t ncclCommDestroy(ncclComm_t comm);
Function("ncclCommDestroy", ncclResult_t, [ncclComm_t]),
# ncclResult_t ncclGroupStart();
Function("ncclGroupStart", ncclResult_t, []),
# ncclResult_t ncclGroupEnd();
Function("ncclGroupEnd", ncclResult_t, []),
# ncclResult_t ncclCommWindowRegister(
# ncclComm_t comm, void* buff, size_t size,
# ncclWindow_t* win, int winFlags);
Function(
"ncclCommWindowRegister",
ncclResult_t,
[
ncclComm_t,
buffer_type,
ctypes.c_size_t,
ctypes.POINTER(ncclWindow_t),
ctypes.c_int,
],
),
# ncclResult_t ncclCommWindowDeregister(
# ncclComm_t comm, ncclWindow_t win);
Function("ncclCommWindowDeregister", ncclResult_t, [ncclComm_t, ncclWindow_t]),
]
# class attribute to store the mapping from the path to the library
# to avoid loading the same library multiple times
path_to_library_cache: dict[str, Any] = {}
# class attribute to store the mapping from library path
# to the corresponding dictionary
path_to_dict_mapping: dict[str, dict[str, Any]] = {}
def __init__(self, so_file: Optional[str] = None):
so_file = so_file or find_nccl_library()
try:
if so_file not in NCCLLibrary.path_to_dict_mapping:
lib = ctypes.CDLL(so_file)
NCCLLibrary.path_to_library_cache[so_file] = lib
self.lib = NCCLLibrary.path_to_library_cache[so_file]
except Exception as e:
logger.error(
"Failed to load NCCL library from %s. "
"It is expected if you are not running on NVIDIA/AMD GPUs."
"Otherwise, the nccl library might not exist, be corrupted "
"or it does not support the current platform %s. "
"If you already have the library, please set the "
"environment variable VLLM_NCCL_SO_PATH"
" to point to the correct nccl library path.",
so_file,
platform.platform(),
)
raise e
if so_file not in NCCLLibrary.path_to_dict_mapping:
_funcs: dict[str, Any] = {}
for func in NCCLLibrary.exported_functions:
try:
f = getattr(self.lib, func.name)
f.restype = func.restype
f.argtypes = func.argtypes
_funcs[func.name] = f
except AttributeError:
if func.name in [
"ncclCommWindowRegister",
"ncclCommWindowDeregister",
]:
if envs.VLLM_USE_NCCL_SYMM_MEM:
logger.warning_once(
"The symbol %s is not found in the NCCL "
"library %s. To enable VLLM_USE_NCCL_SYMM_MEM "
" please update your NCCL version to >= "
"2.27.03.",
func.name,
so_file,
)
if current_platform.is_rocm():
# Having an exception here on ROCm platform is
# not allowed during graph capturing
continue
raise
NCCLLibrary.path_to_dict_mapping[so_file] = _funcs
self._funcs = NCCLLibrary.path_to_dict_mapping[so_file]
def ncclGetErrorString(self, result: ncclResult_t) -> str:
return self._funcs["ncclGetErrorString"](result).decode("utf-8")
def NCCL_CHECK(self, result: ncclResult_t) -> None:
if result != 0:
error_str = self.ncclGetErrorString(result)
raise RuntimeError(f"NCCL error: {error_str}")
def ncclGetRawVersion(self) -> int:
version = ctypes.c_int()
self.NCCL_CHECK(self._funcs["ncclGetVersion"](ctypes.byref(version)))
# something like 21903
return version.value
def ncclGetVersion(self) -> str:
version_str = str(self.ncclGetRawVersion())
# something like 21903 --> "2.19.3"
major = version_str[0].lstrip("0")
minor = version_str[1:3].lstrip("0")
patch = version_str[3:].lstrip("0")
return f"{major}.{minor}.{patch}"
def ncclGetUniqueId(self) -> ncclUniqueId:
unique_id = ncclUniqueId()
self.NCCL_CHECK(self._funcs["ncclGetUniqueId"](ctypes.byref(unique_id)))
return unique_id
def unique_id_from_bytes(self, data: bytes) -> ncclUniqueId:
if len(data) != 128:
raise ValueError(
f"Expected 128 bytes for ncclUniqueId, got {len(data)} bytes"
)
unique_id = ncclUniqueId()
ctypes.memmove(ctypes.addressof(unique_id.internal), data, 128)
return unique_id
def ncclCommInitRank(
self, world_size: int, unique_id: ncclUniqueId, rank: int
) -> ncclComm_t:
comm = ncclComm_t()
self.NCCL_CHECK(
self._funcs["ncclCommInitRank"](
ctypes.byref(comm), world_size, unique_id, rank
)
)
return comm
def ncclAllReduce(
self,
sendbuff: buffer_type,
recvbuff: buffer_type,
count: int,
datatype: int,
op: int,
comm: ncclComm_t,
stream: cudaStream_t,
) -> None:
# `datatype` actually should be `ncclDataType_t`
# and `op` should be `ncclRedOp_t`
# both are aliases of `ctypes.c_int`
# when we pass int to a function, it will be converted to `ctypes.c_int`
# by ctypes automatically
self.NCCL_CHECK(
self._funcs["ncclAllReduce"](
sendbuff, recvbuff, count, datatype, op, comm, stream
)
)
def ncclReduce(
self,
sendbuff: buffer_type,
recvbuff: buffer_type,
count: int,
datatype: int,
op: int,
root: int,
comm: ncclComm_t,
stream: cudaStream_t,
) -> None:
# `datatype` actually should be `ncclDataType_t`
# and `op` should be `ncclRedOp_t`
# both are aliases of `ctypes.c_int`
# when we pass int to a function, it will be converted to `ctypes.c_int`
# by ctypes automatically
self.NCCL_CHECK(
self._funcs["ncclReduce"](
sendbuff, recvbuff, count, datatype, op, root, comm, stream
)
)
def ncclReduceScatter(
self,
sendbuff: buffer_type,
recvbuff: buffer_type,
count: int,
datatype: int,
op: int,
comm: ncclComm_t,
stream: cudaStream_t,
) -> None:
# `datatype` actually should be `ncclDataType_t`
# and `op` should be `ncclRedOp_t`
# both are aliases of `ctypes.c_int`
# when we pass int to a function, it will be converted to `ctypes.c_int`
# by ctypes automatically
self.NCCL_CHECK(
self._funcs["ncclReduceScatter"](
sendbuff, recvbuff, count, datatype, op, comm, stream
)
)
def ncclAllGather(
self,
sendbuff: buffer_type,
recvbuff: buffer_type,
count: int,
datatype: int,
comm: ncclComm_t,
stream: cudaStream_t,
) -> None:
# `datatype` actually should be `ncclDataType_t`
# which is an aliases of `ctypes.c_int`
# when we pass int to a function, it will be converted to `ctypes.c_int`
# by ctypes automatically
self.NCCL_CHECK(
self._funcs["ncclAllGather"](
sendbuff, recvbuff, count, datatype, comm, stream
)
)
def ncclSend(
self,
sendbuff: buffer_type,
count: int,
datatype: int,
dest: int,
comm: ncclComm_t,
stream: cudaStream_t,
) -> None:
self.NCCL_CHECK(
self._funcs["ncclSend"](sendbuff, count, datatype, dest, comm, stream)
)
def ncclRecv(
self,
recvbuff: buffer_type,
count: int,
datatype: int,
src: int,
comm: ncclComm_t,
stream: cudaStream_t,
) -> None:
self.NCCL_CHECK(
self._funcs["ncclRecv"](recvbuff, count, datatype, src, comm, stream)
)
def ncclBroadcast(
self,
sendbuff: buffer_type,
recvbuff: buffer_type,
count: int,
datatype: int,
root: int,
comm: ncclComm_t,
stream: cudaStream_t,
) -> None:
self.NCCL_CHECK(
self._funcs["ncclBroadcast"](
sendbuff, recvbuff, count, datatype, root, comm, stream
)
)
def ncclCommDestroy(self, comm: ncclComm_t) -> None:
self.NCCL_CHECK(self._funcs["ncclCommDestroy"](comm))
def ncclGroupStart(self) -> None:
self.NCCL_CHECK(self._funcs["ncclGroupStart"]())
def ncclGroupEnd(self) -> None:
self.NCCL_CHECK(self._funcs["ncclGroupEnd"]())
def ncclCommWindowRegister(
self, comm: ncclComm_t, buff: buffer_type, size: int, win_flags: int
) -> ncclWindow_t:
window = ncclWindow_t()
self.NCCL_CHECK(
self._funcs["ncclCommWindowRegister"](
comm, buff, size, ctypes.byref(window), win_flags
)
)
return window
def ncclCommWindowDeregister(self, comm: ncclComm_t, window: ncclWindow_t) -> None:
self.NCCL_CHECK(self._funcs["ncclCommWindowDeregister"](comm, window))
__all__ = [
"NCCLLibrary",
"ncclDataTypeEnum",
"ncclRedOpTypeEnum",
"ncclUniqueId",
"ncclComm_t",
"cudaStream_t",
"buffer_type",
]