vllm/tests/models/embedding/vision_language/test_dse_qwen2_vl.py
Cyrus Leung f690372b68
[Core] Update dtype detection and defaults (#14858)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-19 13:49:33 +08:00

216 lines
6.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Callable
import pytest
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import Qwen2VLForConditionalGeneration
from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner
from ....utils import large_gpu_test
from ..utils import check_embeddings_close
HF_TEXT_PROMPTS = [
# T -> X
(
"Query: Find me an everyday image that matches the given caption: The label of the object is stop sign", # noqa: E501,
Image.new("RGB", (56, 56))),
# T -> X
("Query: Retrieve an image of this caption: cherry blossom",
Image.new("RGB", (56, 56))),
]
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"What is shown in this image?",
"cherry_blossom":
"What is shown in this image?"
})
MODELS = ["MrLight/dse-qwen2-2b-mrl-v1"]
def get_messages(image: Image.Image, text: str, embed_text: bool):
# assert False, 'remember to use outer [] as required'
if embed_text:
messages = [{
"role":
"user",
"content": [
{
"type": "image",
"image": Image.new("RGB", (56, 56)),
"resized_height": 1,
"resized_width": 1
}, # need a dummy image here for an easier process.
{
"type": "text",
"text": text
},
]
}]
else:
messages = [{
"role":
"user",
"content": [{
"type": "image",
"image": image
}, {
"type": "text",
"text": text
}]
}]
return messages
def apply_chat_template_and_add_eos(
messages: list[dict],
apply_chat_template_fn: Callable,
):
prompt = apply_chat_template_fn(
messages, tokenize=False, add_generation_prompt=True) + "<|endoftext|>"
return prompt
def _run_test(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
input_texts: list[str],
input_images: PromptImageInput,
embed_texts: list[bool],
model: str,
*,
dtype: str,
) -> None:
'''SET PYTHONPATH'''
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
with vllm_runner(model,
task="embed",
dtype=dtype,
enforce_eager=True,
max_model_len=8192) as vllm_model:
tokenizer = vllm_model.model.get_tokenizer()
texts = [
# this is necessary because vllm_model.encode will not apply any
# templating to the prompt, and therefore lacks an image_pad
# token unless one is inserted beforehand (the (28,28) image
# above is converted to an image pad token by the chat template).
apply_chat_template_and_add_eos(
get_messages(image, text, False),
apply_chat_template_fn=tokenizer.apply_chat_template,
) for text, image in zip(input_texts, input_images)
# vllm will replace the pad token with the actual image,
# which may be a placeholder image, later.
]
vllm_outputs = vllm_model.encode(texts, images=input_images)
hf_outputs = []
with hf_runner(model,
dtype=dtype,
auto_cls=Qwen2VLForConditionalGeneration) as hf_model:
prompts = []
for text, image, embed_text in zip(input_texts, input_images,
embed_texts):
# dse requires non-standard input processing
# because it needs an image_pad token
messages = get_messages(image, text, embed_text)
prompt = apply_chat_template_and_add_eos(
messages, hf_model.processor.apply_chat_template)
prompts.append(prompt)
all_inputs = hf_model.get_inputs(
prompts=prompts,
images=input_images,
)
with torch.no_grad():
all_outputs = []
for inputs in all_inputs:
inputs = hf_model.model.prepare_inputs_for_generation(
**inputs,
cache_position=torch.arange(1), # 1 for batch size
use_cache=False,
)
outputs = hf_model.model(
**hf_model.wrap_device(inputs),
return_dict=True,
output_hidden_states=True,
)
pooled_output = F.normalize(outputs.hidden_states[-1][0, -1],
p=2,
dim=-1)
all_outputs.append(pooled_output.tolist())
hf_outputs = all_outputs
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
def test_models_text(
hf_runner,
vllm_runner,
image_assets,
model: str,
dtype: str,
) -> None:
input_texts_images = [(text, image_placeholder)
for text, image_placeholder in HF_TEXT_PROMPTS]
input_texts = [text for text, _ in input_texts_images]
input_images = [image for _, image in input_texts_images]
embed_texts = [True] * len(input_texts)
_run_test(
hf_runner,
vllm_runner,
input_texts,
input_images, # type: ignore
embed_texts,
model,
dtype=dtype,
)
@large_gpu_test(min_gb=48)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
def test_models_image(
hf_runner,
vllm_runner,
image_assets,
model: str,
dtype: str,
) -> None:
input_texts_images = [
(text, asset.pil_image)
for text, asset in zip(HF_IMAGE_PROMPTS, image_assets)
]
input_texts = [text for text, _ in input_texts_images]
input_images = [image for _, image in input_texts_images]
embed_texts = [False] * len(input_texts)
_run_test(
hf_runner,
vllm_runner,
input_texts,
input_images,
embed_texts,
model,
dtype=dtype,
)