mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-11 04:34:54 +08:00
170 lines
4.9 KiB
Python
170 lines
4.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import json
|
|
|
|
import openai
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from tests.utils import RemoteOpenAIServer
|
|
from vllm.multimodal.utils import encode_image_base64, fetch_image
|
|
|
|
# Use a small vision model for testing
|
|
MODEL_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
|
|
MAXIMUM_IMAGES = 2
|
|
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
|
|
TEST_IMAGE_URLS = [
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
|
|
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def default_image_server_args():
|
|
return [
|
|
"--enforce-eager",
|
|
"--max-model-len",
|
|
"6000",
|
|
"--max-num-seqs",
|
|
"128",
|
|
"--limit-mm-per-prompt",
|
|
json.dumps({"image": MAXIMUM_IMAGES}),
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def image_server(default_image_server_args):
|
|
with RemoteOpenAIServer(
|
|
MODEL_NAME,
|
|
default_image_server_args,
|
|
env_dict={"VLLM_ENABLE_RESPONSES_API_STORE": "1"},
|
|
) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(image_server):
|
|
async with image_server.get_async_client() as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def base64_encoded_image() -> dict[str, str]:
|
|
return {
|
|
image_url: encode_image_base64(fetch_image(image_url))
|
|
for image_url in TEST_IMAGE_URLS
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_single_chat_session_image(client: openai.AsyncOpenAI,
|
|
model_name: str, image_url: str):
|
|
content_text = "What's in this image?"
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "input_image",
|
|
"image_url": image_url,
|
|
"detail": "auto",
|
|
},
|
|
{
|
|
"type": "input_text",
|
|
"text": content_text
|
|
},
|
|
],
|
|
}]
|
|
|
|
# test image url
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input=messages,
|
|
)
|
|
assert len(response.output_text) > 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_single_chat_session_image_base64encoded(
|
|
client: openai.AsyncOpenAI,
|
|
model_name: str,
|
|
image_url: str,
|
|
base64_encoded_image: dict[str, str],
|
|
):
|
|
content_text = "What's in this image?"
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
{
|
|
"type": "input_image",
|
|
"image_url":
|
|
f"data:image/jpeg;base64,{base64_encoded_image[image_url]}",
|
|
"detail": "auto",
|
|
},
|
|
{
|
|
"type": "input_text",
|
|
"text": content_text
|
|
},
|
|
],
|
|
}]
|
|
# test image base64
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input=messages,
|
|
)
|
|
assert len(response.output_text) > 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
@pytest.mark.parametrize(
|
|
"image_urls",
|
|
[TEST_IMAGE_URLS[:i] for i in range(2, len(TEST_IMAGE_URLS))])
|
|
async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
|
|
image_urls: list[str]):
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content": [
|
|
*({
|
|
"type": "input_image",
|
|
"image_url": image_url,
|
|
"detail": "auto",
|
|
} for image_url in image_urls),
|
|
{
|
|
"type": "input_text",
|
|
"text": "What's in this image?"
|
|
},
|
|
],
|
|
}]
|
|
|
|
if len(image_urls) > MAXIMUM_IMAGES:
|
|
with pytest.raises(openai.BadRequestError): # test multi-image input
|
|
await client.responses.create(
|
|
model=model_name,
|
|
input=messages,
|
|
)
|
|
# the server should still work afterwards
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input=[{
|
|
"role": "user",
|
|
"content": "What's the weather like in Paris today?",
|
|
}],
|
|
)
|
|
assert len(response.output_text) > 0
|
|
else:
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input=messages,
|
|
)
|
|
assert len(response.output_text) > 0
|