vllm/csrc/quantization/fp4/nvfp4_experts_quant.cu
Michael Goin e502098643
[Kernel] Add NVFP4 MoE CUTLASS support for SM120 (#29242)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-11-25 06:59:07 -08:00

369 lines
15 KiB
Plaintext

/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cuda_runtime_api.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp8.h>
#include "dispatch_utils.h"
#include "nvfp4_utils.cuh"
#include "launch_bounds_utils.h"
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts,
bool low_latency) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
"Vec size is not matched.");
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int colsPerRow = numCols / CVT_FP4_ELTS_PER_THREAD;
// Each global thread processes one element
for (int globalIdx = tid; globalIdx < numRows * colsPerRow;
globalIdx += gridDim.x * blockDim.x) {
// Calculate which row and column this global thread should process
int rowIdx = globalIdx / colsPerRow;
int colIdx = globalIdx % colsPerRow;
int64_t inOffset = rowIdx * colsPerRow + colIdx;
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
// Get the output tensor offset.
// Same as inOffset because 8 elements are packed into one uint32_t.
int64_t outOffset = inOffset;
auto& out_pos = out[outOffset];
// Find index within the experts using different strategies based on expert
// count
int rowIdx_in_expert = 0;
int expert_idx = 0;
if constexpr (SMALL_NUM_EXPERTS) {
for (int i = 0; i < n_experts; i++) {
uint32_t current_offset = __ldca(&input_offset_by_experts[i]);
uint32_t next_offset = __ldca(&input_offset_by_experts[i + 1]);
if (rowIdx >= current_offset && rowIdx < next_offset) {
rowIdx_in_expert = rowIdx - current_offset;
expert_idx = i;
break;
}
}
} else {
// Load input offsets into registers first, then do the computation.
// Local array size set to 17 because of register limit.
uint32_t local_offsets[17];
for (int chunk_start = 0; chunk_start < n_experts; chunk_start += 16) {
*reinterpret_cast<int4*>(local_offsets) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start]));
*reinterpret_cast<int4*>(local_offsets + 4) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start + 4]));
*reinterpret_cast<int4*>(local_offsets + 8) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start + 8]));
*reinterpret_cast<int4*>(local_offsets + 12) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start + 12]));
local_offsets[16] = __ldca(&input_offset_by_experts[chunk_start + 16]);
// Check against the 16 loaded offsets
#pragma unroll
for (int i = 0; i < 16; i++) {
if (rowIdx >= local_offsets[i] && rowIdx < local_offsets[i + 1]) {
rowIdx_in_expert = rowIdx - local_offsets[i];
expert_idx = chunk_start + i;
break;
}
}
}
}
// Get the global scaling factor, which will be applied to the SF.
// Note SFScale is the same as next GEMM's alpha, which is
// (448.f / (Alpha_A / 6.f)).
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[expert_idx];
int factor = CVT_FP4_SF_VEC_SIZE * 4;
// The actual output_scales dim is computed from the padded numCols.
int32_t numCols_padded = (numCols + factor - 1) / factor * factor;
int numCols_SFout = numCols_padded / CVT_FP4_SF_VEC_SIZE / 4;
uint32_t* SFout_in_expert =
SFout + output_scale_offset_by_experts[expert_idx] * numCols_SFout;
auto sf_out =
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
CVT_FP4_NUM_THREADS_PER_SF>(
rowIdx_in_expert, colIdx, numCols, SFout_in_expert);
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
}
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
"Vec size is not matched.");
extern __shared__ uint32_t shared_input_offsets[];
// Load input offsets into shared memory.
// If n_experts is larger than 4, use vectorized int4 to save instructions.
// If n_experts is smaller than 4, read directly.
if constexpr (SMALL_NUM_EXPERTS) {
for (int i = threadIdx.x; i < n_experts + 1; i += blockDim.x) {
shared_input_offsets[i] = input_offset_by_experts[i];
}
} else {
for (int i = threadIdx.x * 4; i < n_experts; i += blockDim.x * 4) {
*reinterpret_cast<int4*>(&shared_input_offsets[i]) =
*reinterpret_cast<const int4*>(&input_offset_by_experts[i]);
}
if (threadIdx.x == 0) {
shared_input_offsets[n_experts] = input_offset_by_experts[n_experts];
}
}
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int colsPerRow = numCols / CVT_FP4_ELTS_PER_THREAD;
// Each global thread processes one element
for (int globalIdx = tid; globalIdx < numRows * colsPerRow;
globalIdx += gridDim.x * blockDim.x) {
// Calculate which row and column this global thread should process
int rowIdx = globalIdx / colsPerRow;
int colIdx = globalIdx % colsPerRow;
int64_t inOffset = rowIdx * colsPerRow + colIdx;
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
int64_t outOffset = inOffset;
auto& out_pos = out[outOffset];
// Find expert using binary search for better performance with large m_topk
int rowIdx_in_expert = 0;
int expert_idx = 0;
// Binary search through experts using shared memory
int left = 0, right = n_experts - 1;
while (left <= right) {
int mid = (left + right) / 2;
// Get offsets: shared_input_offsets[i] corresponds to
// input_offset_by_experts[i]
uint32_t mid_offset = shared_input_offsets[mid];
uint32_t next_offset = shared_input_offsets[mid + 1];
if (rowIdx >= mid_offset && rowIdx < next_offset) {
rowIdx_in_expert = rowIdx - mid_offset;
expert_idx = mid;
break;
} else if (rowIdx < mid_offset) {
right = mid - 1;
} else {
left = mid + 1;
}
}
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[expert_idx];
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numCols_padded = (numCols + factor - 1) / factor * factor;
int numCols_SFout = numCols_padded / CVT_FP4_SF_VEC_SIZE / 4;
uint32_t* SFout_in_expert =
SFout + output_scale_offset_by_experts[expert_idx] * numCols_SFout;
auto sf_out =
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
CVT_FP4_NUM_THREADS_PER_SF>(
rowIdx_in_expert, colIdx, numCols, SFout_in_expert);
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
}
template <typename T>
void quant_impl(void* output, void* output_scale, void* input,
void* input_global_scale, void* input_offset_by_experts,
void* output_scale_offset_by_experts, int m_topk, int k,
int n_experts, cudaStream_t stream) {
// TODO: this multiProcessorCount should be cached.
int device;
cudaGetDevice(&device);
int multiProcessorCount;
cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount,
device);
// Grid, Block size.
// Each thread converts 8 values.
int const workSizePerRow = k / ELTS_PER_THREAD;
int const totalWorkSize = m_topk * workSizePerRow;
dim3 block(std::min(workSizePerRow, 512));
// Get number of blocks per SM
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
dim3 grid(std::min(static_cast<int>((totalWorkSize + block.x - 1) / block.x),
multiProcessorCount * numBlocksPerSM));
while (grid.x <= multiProcessorCount && block.x > 64) {
grid.x *= 2;
block.x = (block.x + 1) / 2;
}
int const blockRepeat =
(totalWorkSize + block.x * grid.x - 1) / (block.x * grid.x);
if (blockRepeat > 1) {
size_t shared_mem_size = (n_experts + 1) * sizeof(uint32_t);
if (n_experts >= 4) {
cvt_fp16_to_fp4<T, false, false>
<<<grid, block, shared_mem_size, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts);
} else {
cvt_fp16_to_fp4<T, false, true><<<grid, block, shared_mem_size, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts);
}
} else {
if (n_experts >= 16) {
cvt_fp16_to_fp4<T, false, false><<<grid, block, 0, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts, /* bool low_latency */ true);
} else {
cvt_fp16_to_fp4<T, false, true><<<grid, block, 0, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts, /* bool low_latency */ true);
}
}
}
} // namespace vllm
/*Quantization entry for fp4 experts quantization*/
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x, m) \
TORCH_CHECK(x.is_contiguous(), m, "must be contiguous")
#define CHECK_INPUT(x, m) \
CHECK_TH_CUDA(x, m); \
CHECK_CONTIGUOUS(x, m);
constexpr auto HALF = at::ScalarType::Half;
constexpr auto BF16 = at::ScalarType::BFloat16;
constexpr auto FLOAT = at::ScalarType::Float;
constexpr auto INT = at::ScalarType::Int;
constexpr auto UINT8 = at::ScalarType::Byte;
void scaled_fp4_experts_quant_sm1xxa(
torch::Tensor& output, torch::Tensor& output_scale,
torch::Tensor const& input, torch::Tensor const& input_global_scale,
torch::Tensor const& input_offset_by_experts,
torch::Tensor const& output_scale_offset_by_experts) {
CHECK_INPUT(output, "output must be a CUDA tensor");
CHECK_INPUT(output_scale, "output_scale must be a CUDA tensor");
CHECK_INPUT(input, "input must be a CUDA tensor");
CHECK_INPUT(input_global_scale, "input_global_scale must be a CUDA tensor");
CHECK_INPUT(input_offset_by_experts,
"input_offset_by_experts must be a CUDA tensor");
CHECK_INPUT(output_scale_offset_by_experts,
"output_scale_offset_by_experts must be a CUDA tensor");
TORCH_CHECK(output.dim() == 2);
TORCH_CHECK(output_scale.dim() == 2);
TORCH_CHECK(input.dim() == 2);
TORCH_CHECK(input_global_scale.dim() == 1);
TORCH_CHECK(input_offset_by_experts.dim() == 1);
TORCH_CHECK(output_scale_offset_by_experts.dim() == 1);
TORCH_CHECK(input.scalar_type() == HALF || input.scalar_type() == BF16);
TORCH_CHECK(input_global_scale.scalar_type() == FLOAT);
TORCH_CHECK(input_offset_by_experts.scalar_type() == INT);
TORCH_CHECK(output_scale_offset_by_experts.scalar_type() == INT);
// output is uint8 (two nvfp4 values are packed into one uint8)
// output_scale is int32 (four fp8 values are packed into one int32)
TORCH_CHECK(output.scalar_type() == UINT8);
TORCH_CHECK(output_scale.scalar_type() == INT);
const int BLOCK_SIZE = 16;
auto m_topk = input.size(0);
auto k = input.size(1);
TORCH_CHECK(k % BLOCK_SIZE == 0, "k must be a multiple of 16");
auto n_experts = input_global_scale.size(0);
TORCH_CHECK(input_offset_by_experts.size(0) == n_experts + 1);
TORCH_CHECK(output_scale_offset_by_experts.size(0) == n_experts + 1);
TORCH_CHECK(output.size(0) == m_topk);
TORCH_CHECK(output.size(1) == k / 2);
int scales_k = k / BLOCK_SIZE;
// 4 means the swizzle requirement by nvidia nvfp4.
int padded_k = (scales_k + (4 - 1)) / 4 * 4;
// 4 means 4 fp8 values are packed into one int32
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(input.get_device());
VLLM_DISPATCH_HALF_TYPES(
input.scalar_type(), "nvfp4_experts_quant_kernel", [&] {
using cuda_type = vllm::CUDATypeConverter<scalar_t>::Type;
vllm::quant_impl<cuda_type>(
output.data_ptr(), output_scale.data_ptr(), input.data_ptr(),
input_global_scale.data_ptr(), input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k, n_experts,
stream);
});
}