mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 04:25:01 +08:00
Signed-off-by: Yong Hoon Shin <yhshin@meta.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
86 lines
2.6 KiB
Python
86 lines
2.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import random
|
|
|
|
import pytest
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.config import CompilationConfig, CompilationMode
|
|
|
|
from ...utils import check_answers, fork_new_process_for_each_test, prep_prompts
|
|
|
|
# global seed
|
|
SEED = 42
|
|
|
|
|
|
@pytest.fixture
|
|
def test_prompts():
|
|
"""
|
|
Adapted from tests/v1/e2e/test_spec_decode.py
|
|
"""
|
|
prompt_types = ["repeat", "sentence"]
|
|
# Setting higher num prompts increases the chance of numerics mismatch
|
|
# due to matrix multiplication numerics depending on batch dimension
|
|
num_prompts = 10
|
|
prompts = []
|
|
|
|
random.seed(0)
|
|
random_prompt_type_choices = random.choices(prompt_types, k=num_prompts)
|
|
|
|
for kind in random_prompt_type_choices:
|
|
word_choices = ["test", "temp", "hello", "where"]
|
|
word = random.choice(word_choices)
|
|
if kind == "repeat":
|
|
prompt = f"""please repeat the word '{word}' 10 times."""
|
|
elif kind == "sentence":
|
|
prompt = f"""please give a ten-word sentence that
|
|
uses the word {word} at least once."""
|
|
else:
|
|
raise ValueError(f"Unknown prompt type: {kind}")
|
|
prompts.append(prompt)
|
|
|
|
return prompts
|
|
|
|
|
|
@fork_new_process_for_each_test
|
|
@pytest.mark.parametrize("kv_sharing_fast_prefill", [False, True])
|
|
@pytest.mark.parametrize("enforce_eager", [True, False])
|
|
def test_kv_sharing_fast_prefill(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
kv_sharing_fast_prefill: bool,
|
|
enforce_eager: bool,
|
|
test_prompts: list[str],
|
|
):
|
|
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
|
|
compilation_config = CompilationConfig(
|
|
# This allows vLLM compilation backend to handle allocating and
|
|
# managing buffers for cudagraph
|
|
cudagraph_copy_inputs=True,
|
|
mode=CompilationMode.VLLM_COMPILE
|
|
if not enforce_eager
|
|
else CompilationMode.NONE,
|
|
)
|
|
batch_size = 10
|
|
|
|
with monkeypatch.context() as m:
|
|
# Make scheduling deterministic for reproducibility
|
|
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
|
|
|
|
prompts, answer, indices = prep_prompts(batch_size)
|
|
|
|
llm = LLM(
|
|
model="google/gemma-3n-E2B-it",
|
|
enforce_eager=enforce_eager,
|
|
compilation_config=compilation_config,
|
|
seed=SEED,
|
|
kv_sharing_fast_prefill=kv_sharing_fast_prefill,
|
|
)
|
|
responses = llm.generate(prompts, sampling_params)
|
|
check_answers(
|
|
indices,
|
|
answer,
|
|
[response.outputs[0].text for response in responses],
|
|
accept_rate=1.0,
|
|
)
|