2025-11-19 16:24:55 +00:00

528 lines
19 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import NamedTuple
import torch
from torch import nn
from torch.nn.parameter import Parameter
from vllm.config import CacheConfig, ModelConfig, get_current_vllm_config
from vllm.distributed.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.mamba.abstract import MambaBase
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn,
causal_conv1d_update,
)
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_scan_fn,
selective_state_update,
)
from vllm.model_executor.utils import set_weight_attrs
from vllm.utils.torch_utils import direct_register_custom_op
from vllm.v1.attention.backends.mamba1_attn import Mamba1AttentionMetadata
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
@CustomOp.register("mamba_mixer")
class MambaMixer(MambaBase, CustomOp):
"""
Compute ∆, A, B, C, and D the state space parameters and compute
the `contextualized_states`. A, D are input independent
(see Mamba paper [1] Section 3.5.2 "Interpretation of A"
for why A isn't selective) ∆, B, C are input-dependent
(this is a key difference between Mamba and the linear time
invariant S4, and is why Mamba is called
**selective** state spaces)
"""
def __init__(
self,
hidden_size: int,
ssm_state_size: int,
conv_kernel_size: int,
intermediate_size: int,
time_step_rank: int,
use_conv_bias: bool,
use_bias: bool,
use_rms_norm: bool,
rms_norm_has_weight: bool = True,
rms_norm_eps: float = 1e-5,
activation="silu",
is_lora_enabled: bool = False,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
prefix: str = "",
):
super().__init__()
self.time_step_rank = time_step_rank
self.ssm_state_size = ssm_state_size
self.use_rms_norm = use_rms_norm
self.activation = activation
self.is_lora_enabled = is_lora_enabled
self.conv_kernel_size = conv_kernel_size
self.intermediate_size = intermediate_size
self.conv1d = ColumnParallelLinear(
input_size=conv_kernel_size,
output_size=intermediate_size,
bias=use_conv_bias,
)
# unsqueeze to fit conv1d weights shape into the linear weights shape.
# Can't do this in `weight_loader` since it already exists in
# `ColumnParallelLinear` and `set_weight_attrs`
# doesn't allow to override it
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
self.in_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2, bias=use_bias
)
# selective projection used to make dt, B and C input dependent
self.x_proj = RowParallelLinear(
intermediate_size,
time_step_rank + ssm_state_size * 2,
bias=False,
)
# time step projection (discretization) -
# In the forward we need to apply dt_proj without the bias,
# as the bias is added in the selective scan kernel.
self.dt_proj = ColumnParallelLinear(
time_step_rank, intermediate_size, bias=True, skip_bias_add=True
)
def weight_loader(param: Parameter, loaded_weight: torch.Tensor):
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
param.data.copy_(
loaded_weight.data.split(loaded_weight.shape[0] // tp_size, dim=0)[
tp_rank
]
)
def A_weight_loader(param: Parameter, loaded_weight: torch.Tensor):
weight_loader(param, -torch.exp(loaded_weight.float()))
tp_size = get_tensor_model_parallel_world_size()
self.A = nn.Parameter(
torch.empty(
intermediate_size // tp_size,
ssm_state_size,
dtype=torch.float32,
)
)
self.D = nn.Parameter(torch.ones(intermediate_size // tp_size))
set_weight_attrs(self.D, {"weight_loader": weight_loader})
set_weight_attrs(self.A, {"weight_loader": A_weight_loader})
self.out_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=use_bias,
input_is_parallel=True,
)
self.dt_layernorm = (
RMSNorm(
time_step_rank,
eps=rms_norm_eps,
has_weight=rms_norm_has_weight,
)
if use_rms_norm
else None
)
self.b_layernorm = (
RMSNorm(
ssm_state_size,
eps=rms_norm_eps,
has_weight=rms_norm_has_weight,
)
if use_rms_norm
else None
)
self.c_layernorm = (
RMSNorm(
ssm_state_size,
eps=rms_norm_eps,
has_weight=rms_norm_has_weight,
)
if use_rms_norm
else None
)
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
compilation_config.static_forward_context[prefix] = self
# The inner tuple is (conv_state, ssm_state)
self.kv_cache = (torch.tensor([]), torch.tensor([]))
self.model_config = model_config
self.cache_config = cache_config
self.prefix = prefix
def _ssm_transform(
self, x: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
if self.is_lora_enabled:
# Lora kernel requires contiguous tensor.
ssm_params = self.x_proj(x.contiguous())[0]
else:
ssm_params = self.x_proj(x)[0]
time_step, B, C = torch.split(
ssm_params,
[self.time_step_rank, self.ssm_state_size, self.ssm_state_size],
dim=-1,
)
if self.use_rms_norm:
assert self.dt_layernorm is not None
assert self.b_layernorm is not None
assert self.c_layernorm is not None
time_step = self.dt_layernorm(time_step.contiguous())
B = self.b_layernorm(B.contiguous())
C = self.c_layernorm(C.contiguous())
discrete_time_step = self.dt_proj(time_step)[0].transpose(-2, -1)
return discrete_time_step, B, C
def forward(self, hidden_states: torch.Tensor, output: torch.Tensor):
torch.ops.vllm.mamba_mixer(
hidden_states,
output,
self.prefix,
)
def forward_native(self, hidden_states: torch.Tensor, output: torch.Tensor):
pass
def forward_cuda(self, hidden_states: torch.Tensor, output: torch.Tensor):
"""
Run the Mamba-1 SSM pipeline.
Steps
-----
1. Apply the gated-MLP linear projection to the raw input.
2. Pass the projected sequence through the convolutional mixing layer.
3. Feed the result into the State-Space Model (SSM) blocks.
4. Perform the recurrence y ← SSM(A, B, C, Δ)(x)
to produce contextual representations.
5. Project the contextualised sequence back
to the output embedding dimension.
Batch handling
--------------
Prefill and decode tokens are processed by dedicated CUDA
kernels for both the convolutional (conv1d) and SSM stages.
In the case of a mixed batch (containing both prefill and
decode tokens), both sets of kernels are executed independently
and their outputs are concatenated before the final output projection.
"""
forward_context: ForwardContext = get_forward_context()
attn_metadata = forward_context.attn_metadata
assert self.cache_config is not None
mamba_block_size = self.cache_config.mamba_block_size
prefix_caching_enabled = self.cache_config.enable_prefix_caching
if attn_metadata is not None:
assert isinstance(attn_metadata, dict)
attn_metadata = attn_metadata[self.prefix]
assert isinstance(attn_metadata, Mamba1AttentionMetadata)
query_start_loc_p = attn_metadata.query_start_loc_p
state_indices_tensor = attn_metadata.state_indices_tensor
self_kv_cache = self.kv_cache[forward_context.virtual_engine]
conv_state = self_kv_cache[0].transpose(-1, -2)
ssm_state = self_kv_cache[1]
has_initial_states_p = attn_metadata.has_initial_states_p
num_padded_decodes = attn_metadata.num_padded_decodes
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states)[0].transpose(-2, -1)
hidden_states_BC, gate = projected_states.chunk(2, dim=-2)
conv_weights = self.conv1d.weight.view(
self.conv1d.weight.size(0), self.conv1d.weight.size(2)
)
if attn_metadata is None:
# V1 profile run
hidden_states_BC = hidden_states_BC.contiguous()
return self.out_proj(hidden_states_BC.transpose(-2, -1))[0]
num_prefill_tokens = attn_metadata.num_prefill_tokens # token count
num_decode_tokens = attn_metadata.num_decode_tokens
num_prefills = attn_metadata.num_prefills # request count
num_decodes = attn_metadata.num_decode_tokens # token count (=request)
has_prefill = num_prefill_tokens > 0
has_decode = num_decode_tokens > 0
num_actual_tokens = num_prefill_tokens + num_decode_tokens
prefill_decode_split = split_batch_to_prefill_and_decode(
hidden_states_BC,
gate,
state_indices_tensor,
num_prefill_tokens,
num_prefills,
num_padded_decodes,
)
hidden_states_BC_p = prefill_decode_split.hidden_states_BC_p
hidden_states_BC_d = prefill_decode_split.hidden_states_BC_d
gate_p = prefill_decode_split.gate_p
gate_d = prefill_decode_split.gate_d
state_indices_tensor_p = prefill_decode_split.state_indices_tensor_p
state_indices_tensor_d = prefill_decode_split.state_indices_tensor_d
if prefix_caching_enabled:
block_idx_last_computed_token_d, block_idx_last_computed_token_p = (
torch.split(
attn_metadata.block_idx_last_computed_token,
[num_decodes, num_prefills],
dim=0,
)
)
block_idx_last_scheduled_token_d, block_idx_last_scheduled_token_p = (
torch.split(
attn_metadata.block_idx_last_scheduled_token,
[num_decodes, num_prefills],
dim=0,
)
)
block_idx_first_scheduled_token_p = (
attn_metadata.block_idx_first_scheduled_token_p
)
num_computed_tokens_p = attn_metadata.num_computed_tokens_p
else:
block_idx_last_computed_token_d = None
block_idx_last_computed_token_p = None
block_idx_last_scheduled_token_d = None
block_idx_last_scheduled_token_p = None
block_idx_first_scheduled_token_p = None
num_computed_tokens_p = None
ssm_outputs = []
if has_prefill:
# 2. Convolution sequence transformation
conv_out_p = causal_conv1d_fn(
hidden_states_BC_p,
conv_weights,
self.conv1d.bias,
activation=self.activation,
conv_states=conv_state,
has_initial_state=has_initial_states_p,
cache_indices=state_indices_tensor_p,
query_start_loc=query_start_loc_p,
block_idx_first_scheduled_token=block_idx_first_scheduled_token_p,
block_idx_last_scheduled_token=block_idx_last_scheduled_token_p,
initial_state_idx=block_idx_last_computed_token_p,
num_computed_tokens=num_computed_tokens_p,
block_size_to_align=mamba_block_size,
)
# 3. State Space Model sequence transformations.
discrete_time_step_p, B_p, C_p = self._ssm_transform(
conv_out_p.transpose(-2, -1)
)
time_proj_bias = self._time_proj_bias()
# 4. Perform the recurrence y ← SSM(A, B, C, Δ)(x)
scan_out_p = selective_scan_fn(
conv_out_p,
ssm_state,
discrete_time_step_p,
self.A,
B_p.transpose(-2, -1),
C_p.transpose(-2, -1),
self.D.float(),
gate_p,
time_proj_bias,
delta_softplus=True,
cache_indices=state_indices_tensor_p,
has_initial_state=has_initial_states_p,
query_start_loc=query_start_loc_p,
block_size=mamba_block_size,
block_idx_first_scheduled_token=block_idx_first_scheduled_token_p,
block_idx_last_scheduled_token=block_idx_last_scheduled_token_p,
initial_state_idx=block_idx_last_computed_token_p,
)
ssm_outputs.append(scan_out_p)
if has_decode:
if prefix_caching_enabled:
state_indices_tensor_d_input = state_indices_tensor_d.gather(
1, block_idx_last_computed_token_d.unsqueeze(1)
).squeeze(1)
state_indices_tensor_d_output = state_indices_tensor_d.gather(
1, block_idx_last_scheduled_token_d.unsqueeze(1)
).squeeze(1)
else:
state_indices_tensor_d_input = state_indices_tensor_d
state_indices_tensor_d_output = state_indices_tensor_d
# 2. Convolution sequence transformation
conv_out_d = causal_conv1d_update(
hidden_states_BC_d.transpose(0, 1),
conv_state,
conv_weights,
self.conv1d.bias,
self.activation,
conv_state_indices=state_indices_tensor_d,
block_idx_last_scheduled_token=block_idx_last_scheduled_token_d,
initial_state_idx=block_idx_last_computed_token_d,
).transpose(0, 1)
# 3. State Space Model sequence transformation.
discrete_time_step_d, B_d, C_d = self._ssm_transform(
conv_out_d.transpose(-2, -1)
)
time_proj_bias = self._time_proj_bias()
# 4. Perform the recurrence y ← SSM(A, B, C, Δ)(x)
scan_outputs_d = torch.empty_like(hidden_states_BC_d.transpose(0, 1))
selective_state_update(
ssm_state,
conv_out_d.transpose(0, 1),
discrete_time_step_d.transpose(0, 1),
self.A,
B_d,
C_d,
self.D,
gate_d.transpose(0, 1),
time_proj_bias,
dt_softplus=True,
state_batch_indices=state_indices_tensor_d_input,
dst_state_batch_indices=state_indices_tensor_d_output,
out=scan_outputs_d,
)
scan_outputs_d = scan_outputs_d.transpose(0, 1)
ssm_outputs.insert(0, scan_outputs_d)
scan_outputs_combined = (
ssm_outputs[0] if len(ssm_outputs) == 1 else torch.cat(ssm_outputs, dim=-1)
)
# 5. Final output projection
if self.is_lora_enabled: # Lora kernel requires contiguous tensor.
scan_outputs_combined = scan_outputs_combined.transpose(-2, -1).contiguous()
out = self.out_proj(scan_outputs_combined)[0]
else:
out = self.out_proj(scan_outputs_combined.transpose(-2, -1))[0]
output[:num_actual_tokens] = out
def get_state_dtype(self) -> tuple[torch.dtype]:
assert self.model_config is not None
assert self.cache_config is not None
return MambaStateDtypeCalculator.mamba1_state_dtype(
self.model_config.dtype,
self.cache_config.mamba_cache_dtype,
self.cache_config.mamba_ssm_cache_dtype,
)
def get_state_shape(self) -> tuple[tuple[int, ...], tuple[int, ...]]:
return MambaStateShapeCalculator.mamba1_state_shape(
tp_world_size=get_tensor_model_parallel_world_size(),
intermediate_size=self.intermediate_size,
state_size=self.ssm_state_size,
conv_kernel=self.conv_kernel_size,
)
@property
def mamba_type(self) -> str:
return "mamba1"
def _time_proj_bias(self) -> torch.Tensor | None:
if hasattr(self.dt_proj, "bias") and self.dt_proj.bias is not None:
return self.dt_proj.bias.float()
return None
class PrefillDecodeSplit(NamedTuple):
hidden_states_BC_p: torch.Tensor
hidden_states_BC_d: torch.Tensor
gate_p: torch.Tensor
gate_d: torch.Tensor
state_indices_tensor_p: torch.Tensor
state_indices_tensor_d: torch.Tensor
def split_batch_to_prefill_and_decode(
hidden_states_BC: torch.Tensor,
gate: torch.Tensor,
state_indices_tensor: torch.Tensor,
num_prefill_tokens: int,
num_prefills: int,
num_padded_decodes: int,
) -> PrefillDecodeSplit:
num_actual_tokens = num_prefill_tokens + num_padded_decodes
# In v1, decode tokens come first, then prefill tokens.
hidden_states_BC_d, hidden_states_BC_p = torch.split(
hidden_states_BC[..., :num_actual_tokens],
[num_padded_decodes, num_prefill_tokens],
dim=-1,
)
gate_d, gate_p = torch.split(
gate[..., :num_actual_tokens], [num_padded_decodes, num_prefill_tokens], dim=-1
)
# num_padded_decodes accounts for CUDA graph padding when applicable
state_indices_tensor_d, state_indices_tensor_p = torch.split(
state_indices_tensor[: num_padded_decodes + num_prefills],
[num_padded_decodes, num_prefills],
dim=0,
)
return PrefillDecodeSplit(
hidden_states_BC_p=hidden_states_BC_p,
hidden_states_BC_d=hidden_states_BC_d,
gate_p=gate_p,
gate_d=gate_d,
state_indices_tensor_p=state_indices_tensor_p,
state_indices_tensor_d=state_indices_tensor_d,
)
def mamba_mixer(
hidden_states: torch.Tensor,
output: torch.Tensor,
layer_name: str,
) -> None:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
self.forward_cuda(hidden_states=hidden_states, output=output)
def mamba_mixer_fake(
hidden_states: torch.Tensor,
output: torch.Tensor,
layer_name: str,
) -> None:
return
direct_register_custom_op(
op_name="mamba_mixer",
op_func=mamba_mixer,
mutates_args=["output"],
fake_impl=mamba_mixer_fake,
)