2024-09-18 10:38:11 +00:00

96 lines
3.5 KiB
Python

# code borrowed from: https://github.com/huggingface/peft/blob/v0.12.0/src/peft/utils/save_and_load.py#L420
import os
from typing import Optional
import torch
from huggingface_hub import file_exists, hf_hub_download
from huggingface_hub.utils import EntryNotFoundError
from safetensors.torch import load_file as safe_load_file
from vllm.platforms import current_platform
WEIGHTS_NAME = "adapter_model.bin"
SAFETENSORS_WEIGHTS_NAME = "adapter_model.safetensors"
# Get current device name based on available devices
def infer_device() -> str:
if current_platform.is_cuda_alike():
return "cuda"
return "cpu"
def load_peft_weights(model_id: str,
device: Optional[str] = None,
**hf_hub_download_kwargs) -> dict:
r"""
A helper method to load the PEFT weights from the HuggingFace Hub or locally
Args:
model_id (`str`):
The local path to the adapter weights or the name of the adapter to
load from the HuggingFace Hub.
device (`str`):
The device to load the weights onto.
hf_hub_download_kwargs (`dict`):
Additional arguments to pass to the `hf_hub_download` method when
loading from the HuggingFace Hub.
"""
path = (os.path.join(model_id, hf_hub_download_kwargs["subfolder"])
if hf_hub_download_kwargs.get("subfolder", None) is not None else
model_id)
if device is None:
device = infer_device()
if os.path.exists(os.path.join(path, SAFETENSORS_WEIGHTS_NAME)):
filename = os.path.join(path, SAFETENSORS_WEIGHTS_NAME)
use_safetensors = True
elif os.path.exists(os.path.join(path, WEIGHTS_NAME)):
filename = os.path.join(path, WEIGHTS_NAME)
use_safetensors = False
else:
token = hf_hub_download_kwargs.get("token", None)
if token is None:
token = hf_hub_download_kwargs.get("use_auth_token", None)
hub_filename = (os.path.join(hf_hub_download_kwargs["subfolder"],
SAFETENSORS_WEIGHTS_NAME)
if hf_hub_download_kwargs.get("subfolder", None)
is not None else SAFETENSORS_WEIGHTS_NAME)
has_remote_safetensors_file = file_exists(
repo_id=model_id,
filename=hub_filename,
revision=hf_hub_download_kwargs.get("revision", None),
repo_type=hf_hub_download_kwargs.get("repo_type", None),
token=token,
)
use_safetensors = has_remote_safetensors_file
if has_remote_safetensors_file:
# Priority 1: load safetensors weights
filename = hf_hub_download(
model_id,
SAFETENSORS_WEIGHTS_NAME,
**hf_hub_download_kwargs,
)
else:
try:
filename = hf_hub_download(model_id, WEIGHTS_NAME,
**hf_hub_download_kwargs)
except EntryNotFoundError:
raise ValueError( # noqa: B904
f"Can't find weights for {model_id} in {model_id} or \
in the Hugging Face Hub. "
f"Please check that the file {WEIGHTS_NAME} or \
{SAFETENSORS_WEIGHTS_NAME} is present at {model_id}.")
if use_safetensors:
adapters_weights = safe_load_file(filename, device=device)
else:
adapters_weights = torch.load(filename,
map_location=torch.device(device))
return adapters_weights