mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-06 12:21:55 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
168 lines
7.1 KiB
Python
168 lines
7.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import Dict, List, Optional
|
|
|
|
from vllm.sequence import (VLLM_INVALID_TOKEN_ID, Logprob, SamplingParams,
|
|
Sequence, SequenceGroup)
|
|
|
|
from .detokenizer_utils import (convert_prompt_ids_to_tokens,
|
|
detokenize_incrementally)
|
|
from .tokenizer import AnyTokenizer
|
|
from .tokenizer_group import BaseTokenizerGroup
|
|
|
|
|
|
class Detokenizer:
|
|
"""Provides methods to decode the output of a model into text."""
|
|
|
|
def __init__(self, tokenizer_group: BaseTokenizerGroup):
|
|
self.tokenizer_group = tokenizer_group
|
|
|
|
def get_tokenizer_for_seq(self, sequence: Sequence) -> AnyTokenizer:
|
|
"""Returns the HF tokenizer to use for a given sequence."""
|
|
return self.tokenizer_group.get_lora_tokenizer(sequence.lora_request)
|
|
|
|
def decode_prompt_logprobs_inplace(self, seq_group: SequenceGroup,
|
|
prompt_logprobs: List[Optional[Dict[
|
|
int, Logprob]]],
|
|
position_offset: int) -> None:
|
|
"""Decodes the logprobs for the prompt of a sequence group.
|
|
|
|
Args:
|
|
seq_group: The sequence group to decode.
|
|
prompt_logprobs: The logprobs to decode.
|
|
position_offset: Offset of the first index of the logprobs
|
|
relative to the start of the sequence (for chunked prefill).
|
|
|
|
Returns:
|
|
The prompt logprobs with the decoded tokens.
|
|
"""
|
|
prms = seq_group.sampling_params
|
|
assert prms is not None
|
|
|
|
# We can pick any sequence for the prompt.
|
|
seq = seq_group.get_seqs()[0]
|
|
# Only prompt, without the generated token.
|
|
all_token_ids = seq.get_token_ids()
|
|
prompt_token_ids = all_token_ids[:-1]
|
|
tokenizer = self.get_tokenizer_for_seq(seq)
|
|
prefix_offset = 0
|
|
read_offset = 0
|
|
next_iter_prefix_offset = 0
|
|
next_iter_read_offset = 0
|
|
next_iter_tokens: List[str] = []
|
|
prev_tokens = None
|
|
|
|
for token_position_in_logprob, prompt_logprobs_for_token in enumerate(
|
|
prompt_logprobs):
|
|
|
|
# Absolute token position equals the index in the logprobs
|
|
# list plus the offset of the entire logprobs list relative
|
|
# to the start of the sequence.
|
|
token_position = token_position_in_logprob + position_offset
|
|
if not prompt_logprobs_for_token:
|
|
continue
|
|
for token_id, sample_logprob in prompt_logprobs_for_token.items():
|
|
if (sample_logprob.decoded_token is None
|
|
and token_id != VLLM_INVALID_TOKEN_ID):
|
|
prompt_token_ids_with_token = (
|
|
prompt_token_ids[:token_position] + [token_id])
|
|
(new_tokens, new_text, new_prefix_offset,
|
|
new_read_offset) = detokenize_incrementally(
|
|
tokenizer=tokenizer,
|
|
all_input_ids=prompt_token_ids_with_token,
|
|
prev_tokens=prev_tokens,
|
|
prefix_offset=prefix_offset,
|
|
read_offset=read_offset,
|
|
skip_special_tokens=prms.skip_special_tokens,
|
|
spaces_between_special_tokens=prms.
|
|
spaces_between_special_tokens,
|
|
)
|
|
|
|
sample_logprob.decoded_token = new_text
|
|
|
|
# Use the offsets & prev tokens corresponding to
|
|
# real tokens to ensure detokenization is consistent
|
|
# actual with prompt.
|
|
if token_id == all_token_ids[token_position]:
|
|
next_iter_prefix_offset = new_prefix_offset
|
|
next_iter_read_offset = new_read_offset
|
|
next_iter_tokens = new_tokens
|
|
|
|
# Advance to the next token position.
|
|
prefix_offset = next_iter_prefix_offset
|
|
read_offset = next_iter_read_offset
|
|
if prev_tokens is None:
|
|
prev_tokens = next_iter_tokens.copy()
|
|
else:
|
|
prev_tokens.extend(next_iter_tokens)
|
|
|
|
def decode_sequence_inplace(self, seq: Sequence,
|
|
prms: SamplingParams) -> int:
|
|
"""Decodes the new token for a sequence. In-place operation.
|
|
|
|
Args:
|
|
seq: The sequence to decode.
|
|
prms: The sampling parameters used to generate the sequence.
|
|
|
|
Returns:
|
|
The number of characters added to the output text.
|
|
"""
|
|
all_input_ids = seq.get_token_ids()
|
|
token_id_generated_this_iteration = all_input_ids[-1]
|
|
tokenizer = self.get_tokenizer_for_seq(seq)
|
|
|
|
# Convert prompt token IDs to tokens if necessary.
|
|
# Do it here so that we don't have to repeat this
|
|
# computation for each logprob.
|
|
if seq.tokens is None:
|
|
(seq.tokens, seq.prefix_offset,
|
|
seq.read_offset) = convert_prompt_ids_to_tokens(
|
|
tokenizer=tokenizer,
|
|
prompt_ids=all_input_ids[:-1],
|
|
skip_special_tokens=prms.skip_special_tokens,
|
|
)
|
|
|
|
(new_tokens, new_decoded_token_text, prefix_offset,
|
|
read_offset) = detokenize_incrementally(
|
|
tokenizer=tokenizer,
|
|
all_input_ids=all_input_ids,
|
|
prev_tokens=seq.tokens,
|
|
prefix_offset=seq.prefix_offset,
|
|
read_offset=seq.read_offset,
|
|
skip_special_tokens=prms.skip_special_tokens,
|
|
spaces_between_special_tokens=prms.spaces_between_special_tokens,
|
|
)
|
|
|
|
# Decode logprobs
|
|
logprobs = seq.output_logprobs[-1]
|
|
if logprobs:
|
|
previous_tokens = all_input_ids[:-1]
|
|
for token_id, sample_logprob in logprobs.items():
|
|
# If the token was generated this iteration,
|
|
# use the provided text.
|
|
if token_id == token_id_generated_this_iteration:
|
|
sample_logprob.decoded_token = new_decoded_token_text
|
|
continue
|
|
|
|
if (sample_logprob.decoded_token is None
|
|
and token_id != VLLM_INVALID_TOKEN_ID):
|
|
all_input_ids_with_logprob = previous_tokens + [token_id]
|
|
(_, new_text, _, _) = detokenize_incrementally(
|
|
tokenizer=tokenizer,
|
|
all_input_ids=all_input_ids_with_logprob,
|
|
prev_tokens=seq.tokens,
|
|
prefix_offset=seq.prefix_offset,
|
|
read_offset=seq.read_offset,
|
|
skip_special_tokens=prms.skip_special_tokens,
|
|
spaces_between_special_tokens=prms.
|
|
spaces_between_special_tokens,
|
|
)
|
|
sample_logprob.decoded_token = new_text
|
|
|
|
seq.tokens.extend(new_tokens)
|
|
seq.prefix_offset = prefix_offset
|
|
seq.read_offset = read_offset
|
|
seq.output_text += new_decoded_token_text
|
|
|
|
return len(new_decoded_token_text)
|