vllm/csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu
elvischenv adc3ddb430
[Bugfix][Misc] Fix silu_and_mul_nvfp4_quant issue and extract common utils for nvfp4 kernel source files (#23727)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 14:25:45 -07:00

421 lines
19 KiB
Plaintext

/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <cutlass/arch/arch.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/gett.hpp"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include <cassert>
using namespace cute;
template <typename ElementAB, typename ElementC, typename ElementSF,
typename ElementAccumulator, typename LayoutSFA, typename LayoutSFB,
typename ScaleConfig>
__global__ void __get_group_gemm_starts(
ElementAB** a_offsets, ElementAB** b_offsets, ElementC** out_offsets,
ElementSF** a_scales_offsets, ElementSF** b_scales_offsets,
ElementAccumulator** alpha_offsets, LayoutSFA* layout_sfa_base_as_int,
LayoutSFB* layout_sfb_base_as_int, ElementAB* a_base_as_int,
ElementAB* b_base_as_int, ElementC* out_base_as_int,
ElementSF* a_scales_base_as_int, ElementSF* b_scales_base_as_int,
ElementAccumulator* alphas_base_as_int, const int32_t* expert_offsets,
const int32_t* sf_offsets, const int32_t* problem_sizes_as_shapes,
const int K, const int N) {
int64_t expert_id = threadIdx.x;
if (expert_id >= gridDim.x * blockDim.x) {
return;
}
// Originally int32_t but upcasting to int64_t to avoid overflow
// during offset calculations
int64_t expert_offset = static_cast<int64_t>(expert_offsets[expert_id]);
int64_t sf_offset = static_cast<int64_t>(sf_offsets[expert_id]);
// size for block in block scale.
int64_t group_size = 16;
int64_t m = static_cast<int64_t>(problem_sizes_as_shapes[expert_id * 3]);
int64_t n = static_cast<int64_t>(problem_sizes_as_shapes[expert_id * 3 + 1]);
int64_t k = static_cast<int64_t>(problem_sizes_as_shapes[expert_id * 3 + 2]);
assert((m >= 0 && n == N && k == K && k % 2 == 0) &&
"unexpected problem sizes");
int64_t half_k = static_cast<int64_t>(k / 2);
int64_t group_k = static_cast<int64_t>(k / group_size);
// Shape of A as uint8/byte = [M, K // 2]
// Shape of B as uint8/byte = [E, N, K // 2]
a_offsets[expert_id] = a_base_as_int + expert_offset * half_k;
b_offsets[expert_id] = b_base_as_int + expert_id * n * half_k;
// Shape of C = [M, N]
out_offsets[expert_id] = out_base_as_int + expert_offset * n;
// Shape of a_scale = [sum(sf_sizes), K // group_size]
a_scales_offsets[expert_id] = a_scales_base_as_int + sf_offset * group_k;
assert((reinterpret_cast<uintptr_t>(a_scales_offsets[expert_id]) % 128) ==
0 &&
"TMA requires 128-byte alignment");
// Shape of B scale = [E, N, K // group_size]
b_scales_offsets[expert_id] = b_scales_base_as_int + expert_id * n * group_k;
assert((reinterpret_cast<uintptr_t>(b_scales_offsets[expert_id]) % 128) ==
0 &&
"TMA requires 128-byte alignment");
// Shape of alpha = [E]
alpha_offsets[expert_id] = alphas_base_as_int + expert_id;
LayoutSFA* layout_sfa_ptr = layout_sfa_base_as_int + expert_id;
LayoutSFB* layout_sfb_ptr = layout_sfb_base_as_int + expert_id;
*layout_sfa_ptr = ScaleConfig::tile_atom_to_shape_SFA(cute::make_shape(
static_cast<int>(m), static_cast<int>(n), static_cast<int>(k), 1));
*layout_sfb_ptr = ScaleConfig::tile_atom_to_shape_SFB(cute::make_shape(
static_cast<int>(m), static_cast<int>(n), static_cast<int>(k), 1));
}
#define __CALL_GET_STARTS_KERNEL_BLOCKSCALE(ELEMENT_AB_TYPE, SF_TYPE, \
TENSOR_C_TYPE, C_TYPE, LayoutSFA, \
LayoutSFB, ScaleConfig) \
else if (out_tensors.dtype() == TENSOR_C_TYPE) { \
__get_group_gemm_starts<ELEMENT_AB_TYPE, C_TYPE, SF_TYPE, float, \
LayoutSFA, LayoutSFB, ScaleConfig> \
<<<1, num_experts, 0, stream>>>( \
static_cast<ELEMENT_AB_TYPE**>(a_starts.data_ptr()), \
static_cast<ELEMENT_AB_TYPE**>(b_starts.data_ptr()), \
static_cast<C_TYPE**>(out_starts.data_ptr()), \
static_cast<SF_TYPE**>(a_scales_starts.data_ptr()), \
static_cast<SF_TYPE**>(b_scales_starts.data_ptr()), \
static_cast<float**>(alpha_starts.data_ptr()), \
reinterpret_cast<LayoutSFA*>(layout_sfa.data_ptr()), \
reinterpret_cast<LayoutSFB*>(layout_sfb.data_ptr()), \
static_cast<ELEMENT_AB_TYPE*>(a_tensors.data_ptr()), \
static_cast<ELEMENT_AB_TYPE*>(b_tensors.data_ptr()), \
static_cast<C_TYPE*>(out_tensors.data_ptr()), \
static_cast<SF_TYPE*>(a_scales.data_ptr()), \
static_cast<SF_TYPE*>(b_scales.data_ptr()), \
static_cast<float*>(alphas.data_ptr()), \
static_cast<int32_t*>(expert_offsets.data_ptr()), \
static_cast<int32_t*>(sf_offsets.data_ptr()), \
static_cast<int32_t*>(problem_sizes.data_ptr()), K, N); \
}
template <typename LayoutSFA, typename LayoutSFB, typename ScaleConfig>
void run_get_group_gemm_starts(
const torch::Tensor& a_starts, const torch::Tensor& b_starts,
const torch::Tensor& out_starts, const torch::Tensor& a_scales_starts,
const torch::Tensor& b_scales_starts, const torch::Tensor& alpha_starts,
const torch::Tensor& layout_sfa, const torch::Tensor& layout_sfb,
/*these are used for their base addresses*/
torch::Tensor const& a_tensors, torch::Tensor const& b_tensors,
torch::Tensor const& out_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& alphas,
torch::Tensor const& expert_offsets, torch::Tensor const& sf_offsets,
torch::Tensor const& problem_sizes, int M, int N, int K) {
int num_experts = (int)expert_offsets.size(0);
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
TORCH_CHECK(out_tensors.size(1) == N,
"Output tensor shape doesn't match expected shape");
TORCH_CHECK(K / 2 == b_tensors.size(2),
"b_tensors(dim = 2) and a_tensors(dim = 1) trailing"
" dimension must match");
if (false) {
}
//(ELEMENT_AB_TYPE, BS_TYPE, TENSOR_C_TYPE, C_TYPE, LayoutSFA, LayoutSFB,
// ScaleConfig)
__CALL_GET_STARTS_KERNEL_BLOCKSCALE(
cutlass::float_e2m1_t, cutlass::float_ue4m3_t, torch::kBFloat16,
cutlass::bfloat16_t, LayoutSFA, LayoutSFB, ScaleConfig)
__CALL_GET_STARTS_KERNEL_BLOCKSCALE(cutlass::float_e2m1_t,
cutlass::float_ue4m3_t, torch::kFloat16,
half, LayoutSFA, LayoutSFB, ScaleConfig)
else {
TORCH_CHECK(false, "Invalid output type (must be float16 or bfloat16)");
}
}
template <typename OutType>
void run_fp4_blockwise_scaled_group_mm(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
const torch::Tensor& a_blockscale, const torch::Tensor& b_blockscales,
const torch::Tensor& alphas, const torch::Tensor& problem_sizes,
const torch::Tensor& expert_offsets, const torch::Tensor& sf_offsets, int M,
int N, int K) {
using ProblemShape =
cutlass::gemm::GroupProblemShape<Shape<int32_t, int32_t, int32_t>>;
using ElementType = cutlass::float_e2m1_t;
using ElementSFType = cutlass::float_ue4m3_t;
using ElementA = cutlass::nv_float4_t<cutlass::float_e2m1_t>;
using ElementB = cutlass::nv_float4_t<cutlass::float_e2m1_t>;
using ElementC = OutType;
using ElementD = ElementC;
using ElementAccumulator = float;
// Layout definitions
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = cutlass::layout::RowMajor;
using LayoutD = LayoutC;
// Alignment constraints
static constexpr int AlignmentA = 32;
static constexpr int AlignmentB = 32;
static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
// Architecture definitions
using ArchTag = cutlass::arch::Sm100;
using EpilogueOperatorClass =
cutlass::arch::OpClassTensorOp; // Epilogue Operator class tag
using MainloopOperatorClass =
cutlass::arch::OpClassBlockScaledTensorOp; // Mainloop Operator class tag
using StageCountType =
cutlass::gemm::collective::StageCountAuto; // Stage count maximized based
// on the tile size
using ClusterShape = Shape<_1, _1, _1>;
struct MMA1SMConfig {
using MmaTileShape = Shape<_128, _128, _128>;
using KernelSchedule = cutlass::gemm::
KernelPtrArrayTmaWarpSpecialized1SmNvf4Sm100; // Kernel to launch
using EpilogueSchedule =
cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm; // Epilogue to launch
};
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag, EpilogueOperatorClass, typename MMA1SMConfig::MmaTileShape,
ClusterShape, Shape<_128, _64>, ElementAccumulator,
ElementAccumulator, ElementC, LayoutC*, AlignmentC, ElementD,
LayoutC*, AlignmentD,
typename MMA1SMConfig::EpilogueSchedule>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, MainloopOperatorClass, ElementA, LayoutA*, AlignmentA,
ElementB, LayoutB*, AlignmentB, ElementAccumulator,
typename MMA1SMConfig::MmaTileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
typename MMA1SMConfig::KernelSchedule>::CollectiveOp;
using GemmKernel =
cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop,
CollectiveEpilogue>;
using Gemm1SM = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using Gemm = Gemm1SM;
using StrideA = typename Gemm::GemmKernel::InternalStrideA;
using StrideB = typename Gemm::GemmKernel::InternalStrideB;
using StrideC = typename Gemm::GemmKernel::InternalStrideC;
using StrideD = typename Gemm::GemmKernel::InternalStrideD;
using LayoutSFA =
typename Gemm::GemmKernel::CollectiveMainloop::InternalLayoutSFA;
using LayoutSFB =
typename Gemm::GemmKernel::CollectiveMainloop::InternalLayoutSFB;
using ScaleConfig =
typename Gemm::GemmKernel::CollectiveMainloop::Sm1xxBlkScaledConfig;
using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
int num_experts = static_cast<int>(expert_offsets.size(0));
auto options_int =
torch::TensorOptions().dtype(torch::kInt64).device(a.device());
torch::Tensor a_ptrs = torch::empty(num_experts, options_int);
torch::Tensor b_ptrs = torch::empty(num_experts, options_int);
torch::Tensor out_ptrs = torch::empty(num_experts, options_int);
torch::Tensor a_scales_ptrs = torch::empty(num_experts, options_int);
torch::Tensor b_scales_ptrs = torch::empty(num_experts, options_int);
torch::Tensor alpha_ptrs = torch::empty(num_experts, options_int);
torch::Tensor layout_sfa = torch::empty({num_experts, 5}, options_int);
torch::Tensor layout_sfb = torch::empty({num_experts, 5}, options_int);
torch::Tensor c_strides1 =
torch::full({num_experts}, output.stride(0), options_int);
torch::Tensor a_strides1 =
torch::full({num_experts}, a.stride(0) * 2, options_int);
torch::Tensor b_strides1 =
torch::full({num_experts}, b.stride(1) * 2, options_int);
run_get_group_gemm_starts<LayoutSFA, LayoutSFB, ScaleConfig>(
a_ptrs, b_ptrs, out_ptrs, a_scales_ptrs, b_scales_ptrs, alpha_ptrs,
layout_sfa, layout_sfb, a, b, output, a_blockscale, b_blockscales, alphas,
expert_offsets, sf_offsets, problem_sizes, M, N, K);
// Create an instance of the GEMM
Gemm gemm_op;
// Initialize problem_sizes_as_shapes correctly
UnderlyingProblemShape* problem_sizes_as_shapes =
static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());
// Set the Scheduler info
cutlass::KernelHardwareInfo hw_info;
using RasterOrderOptions = typename cutlass::gemm::kernel::detail::
PersistentTileSchedulerSm100GroupParams<
typename ProblemShape::UnderlyingProblemShape>::RasterOrderOptions;
typename Gemm::GemmKernel::TileSchedulerArguments scheduler;
scheduler.raster_order = RasterOrderOptions::AlongM;
hw_info.device_id = a.get_device();
static std::unordered_map<int, int> cached_sm_counts;
if (cached_sm_counts.find(hw_info.device_id) == cached_sm_counts.end()) {
cached_sm_counts[hw_info.device_id] =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
}
hw_info.sm_count = min(cached_sm_counts[hw_info.device_id], INT_MAX);
// Mainloop Arguments
typename GemmKernel::MainloopArguments mainloop_args{
static_cast<const ElementType**>(a_ptrs.data_ptr()),
static_cast<StrideA*>(a_strides1.data_ptr()),
static_cast<const ElementType**>(b_ptrs.data_ptr()),
static_cast<StrideB*>(b_strides1.data_ptr()),
static_cast<const ElementSFType**>(a_scales_ptrs.data_ptr()),
reinterpret_cast<LayoutSFA*>(layout_sfa.data_ptr()),
static_cast<const ElementSFType**>(b_scales_ptrs.data_ptr()),
reinterpret_cast<LayoutSFB*>(layout_sfb.data_ptr())};
// Epilogue Arguments
typename GemmKernel::EpilogueArguments epilogue_args{
{}, // epilogue.thread
nullptr,
static_cast<StrideC*>(c_strides1.data_ptr()),
static_cast<ElementD**>(out_ptrs.data_ptr()),
static_cast<StrideC*>(c_strides1.data_ptr())};
auto& fusion_args = epilogue_args.thread;
fusion_args.alpha_ptr_array =
reinterpret_cast<float**>(alpha_ptrs.data_ptr());
fusion_args.dAlpha = {_0{}, _0{}, 1};
// Gemm Arguments
typename GemmKernel::Arguments args{
cutlass::gemm::GemmUniversalMode::kGrouped,
{num_experts, problem_sizes_as_shapes, nullptr},
mainloop_args,
epilogue_args,
hw_info,
scheduler};
size_t workspace_size = Gemm::get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(a.get_device());
auto can_implement_status = gemm_op.can_implement(args);
TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess,
"Failed to implement GEMM");
// Run the GEMM
auto status = gemm_op.initialize(args, workspace.data_ptr());
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");
status = gemm_op.run(args, workspace.data_ptr(), stream);
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}
#if defined ENABLE_NVFP4_SM100 && ENABLE_NVFP4_SM100
constexpr auto FLOAT4_E2M1X2 = at::ScalarType::Byte;
constexpr auto SF_DTYPE = at::ScalarType::Float8_e4m3fn;
#endif
#define CHECK_TYPE(x, st, m) \
TORCH_CHECK(x.scalar_type() == st, ": Inconsistency of Tensor type:", m)
#define CHECK_TH_CUDA(x, m) \
TORCH_CHECK(x.is_cuda(), m, ": must be a CUDA tensor.")
#define CHECK_CONTIGUOUS(x, m) \
TORCH_CHECK(x.is_contiguous(), m, ": must be contiguous.")
#define CHECK_INPUT(x, st, m) \
CHECK_TH_CUDA(x, m); \
CHECK_CONTIGUOUS(x, m); \
CHECK_TYPE(x, st, m)
void cutlass_fp4_group_mm(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
const torch::Tensor& a_blockscale, const torch::Tensor& b_blockscales,
const torch::Tensor& alphas, const torch::Tensor& problem_sizes,
const torch::Tensor& expert_offsets, const torch::Tensor& sf_offsets) {
#if defined ENABLE_NVFP4_SM100 && ENABLE_NVFP4_SM100
// Input validation
CHECK_INPUT(a, FLOAT4_E2M1X2, "a");
CHECK_INPUT(b, FLOAT4_E2M1X2, "b");
CHECK_INPUT(a_blockscale, SF_DTYPE, "a_blockscale");
CHECK_INPUT(b_blockscales, SF_DTYPE, "b_blockscales");
CHECK_INPUT(alphas, at::ScalarType::Float, "alphas");
TORCH_CHECK(a_blockscale.dim() == 2,
"expected a_blockscale to be of shape [num_experts, rounded_m,"
" k // group_size], observed rank: ",
a_blockscale.dim())
TORCH_CHECK(b_blockscales.dim() == 3,
"expected b_blockscale to be of shape: "
" [num_experts, n, k // group_size], observed rank: ",
b_blockscales.dim())
TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be a 2D tensor");
TORCH_CHECK(problem_sizes.size(1) == 3,
"problem_sizes must have the shape (num_experts, 3)");
TORCH_CHECK(problem_sizes.size(0) == expert_offsets.size(0),
"Number of experts in problem_sizes must match expert_offsets");
TORCH_CHECK(problem_sizes.dtype() == torch::kInt32,
"problem_sizes must be int32.");
int M = static_cast<int>(a.size(0));
int N = static_cast<int>(b.size(1));
int E = static_cast<int>(b.size(0));
int K = static_cast<int>(2 * b.size(2));
if (output.scalar_type() == torch::kBFloat16) {
run_fp4_blockwise_scaled_group_mm<cutlass::bfloat16_t>(
output, a, b, a_blockscale, b_blockscales, alphas, problem_sizes,
expert_offsets, sf_offsets, M, N, K);
} else {
run_fp4_blockwise_scaled_group_mm<cutlass::half_t>(
output, a, b, a_blockscale, b_blockscales, alphas, problem_sizes,
expert_offsets, sf_offsets, M, N, K);
}
#else
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"No compiled cutlass_fp4_group_mm kernel, vLLM must "
"be compiled with ENABLE_NVFP4_SM100 for SM100+ and CUDA "
"12.8 or above.");
#endif
}