vllm/csrc/quantization/fp4/nvfp4_quant_entry.cu
elvischenv adc3ddb430
[Bugfix][Misc] Fix silu_and_mul_nvfp4_quant issue and extract common utils for nvfp4 kernel source files (#23727)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-04 14:25:45 -07:00

75 lines
3.1 KiB
Plaintext

/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
void scaled_fp4_quant_sm1xxa(torch::Tensor const& output,
torch::Tensor const& input,
torch::Tensor const& output_sf,
torch::Tensor const& input_sf);
#endif
#if defined ENABLE_NVFP4_SM100 && ENABLE_NVFP4_SM100
void scaled_fp4_experts_quant_sm100a(
torch::Tensor& output, torch::Tensor& output_scale,
torch::Tensor const& input, torch::Tensor const& input_global_scale,
torch::Tensor const& input_offset_by_experts,
torch::Tensor const& output_scale_offset_by_experts);
#endif
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output,
torch::Tensor& output_sf,
torch::Tensor& input,
torch::Tensor& input_sf);
#endif
void scaled_fp4_quant(torch::Tensor& output, torch::Tensor const& input,
torch::Tensor& output_sf, torch::Tensor const& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
return scaled_fp4_quant_sm1xxa(output, input, output_sf, input_sf);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(false, "No compiled nvfp4 quantization kernel");
}
void scaled_fp4_experts_quant(
torch::Tensor& output, torch::Tensor& output_scale,
torch::Tensor const& input, torch::Tensor const& input_global_scale,
torch::Tensor const& input_offset_by_experts,
torch::Tensor const& output_scale_offset_by_experts) {
#if defined ENABLE_NVFP4_SM100 && ENABLE_NVFP4_SM100
return scaled_fp4_experts_quant_sm100a(
output, output_scale, input, input_global_scale, input_offset_by_experts,
output_scale_offset_by_experts);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(false,
"No compiled nvfp4 experts quantization kernel");
}
void silu_and_mul_nvfp4_quant(torch::Tensor& output, torch::Tensor& output_sf,
torch::Tensor& input, torch::Tensor& input_sf) {
#if (defined(ENABLE_NVFP4_SM100) && ENABLE_NVFP4_SM100) || \
(defined(ENABLE_NVFP4_SM120) && ENABLE_NVFP4_SM120)
return silu_and_mul_nvfp4_quant_sm1xxa(output, output_sf, input, input_sf);
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
false, "No compiled silu_and_mul nvfp4 quantization kernel");
}