Roman Solomatin 71d0ae1c54
[Misc] Update embedding/cross encoder tests to use mteb v2 (#27329)
Signed-off-by: Roman Solomatin <36135455+Samoed@users.noreply.github.com>
Signed-off-by: wang.yuqi <noooop@126.com>
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: wang.yuqi <noooop@126.com>
Co-authored-by: wang.yuqi <yuqi.wang@daocloud.io>
2025-11-18 22:28:40 -08:00

416 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import tempfile
import mteb
import numpy as np
import requests
import torch
from mteb.models import ModelMeta
from mteb.types import Array
from torch.utils.data import DataLoader
import tests.ci_envs as ci_envs
from tests.models.utils import (
EmbedModelInfo,
RerankModelInfo,
check_embeddings_close,
get_vllm_extra_kwargs,
)
# Most embedding models on the STS12 task (See #17175):
# - Model implementation and minor changes in tensor dtype
# results in differences less than 1e-4
# - Different model results in differences more than 1e-3
# 1e-4 is a good tolerance threshold
MTEB_EMBED_TASKS = ["STS12"]
MTEB_EMBED_TOL = 1e-4
# See #19344
MTEB_RERANK_TASKS = ["NFCorpus"]
MTEB_RERANK_LANGS = ["eng"]
MTEB_RERANK_TOL = 2e-3
_empty_model_meta = ModelMeta(
loader=None,
name="vllm/model",
revision="1",
release_date=None,
languages=None,
framework=[],
similarity_fn_name=None,
n_parameters=None,
memory_usage_mb=None,
max_tokens=None,
embed_dim=None,
license=None,
open_weights=None,
public_training_code=None,
public_training_data=None,
use_instructions=None,
training_datasets=None,
modalities=["text"], # 'image' can be added to evaluate multimodal models
)
class VllmMtebEncoder(mteb.EncoderProtocol):
mteb_model_meta = _empty_model_meta
def __init__(self, vllm_model):
self.llm = vllm_model
self.rng = np.random.default_rng(seed=42)
def encode(
self,
inputs: DataLoader[mteb.types.BatchedInput],
*args,
**kwargs,
) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
sentences = [text for batch in inputs for text in batch["text"]]
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = self.llm.embed(sentences, use_tqdm=False)
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
def similarity(
self,
embeddings1: np.ndarray,
embeddings2: np.ndarray,
) -> np.ndarray:
# Cosine similarity
norm1 = np.linalg.norm(embeddings1, axis=1, keepdims=True)
norm2 = np.linalg.norm(embeddings2, axis=1, keepdims=True)
sim = np.dot(embeddings1, embeddings2.T) / (norm1 * norm2.T)
return sim
def similarity_pairwise(
self,
embeddings1: Array,
embeddings2: Array,
) -> Array:
# Cosine similarity
norm1 = np.linalg.norm(embeddings1, axis=1, keepdims=True)
norm2 = np.linalg.norm(embeddings2, axis=1, keepdims=True)
sim = np.sum(embeddings1 * embeddings2, axis=1) / (
norm1.flatten() * norm2.flatten()
)
return sim
class VllmMtebCrossEncoder(mteb.CrossEncoderProtocol):
mteb_model_meta = _empty_model_meta
def __init__(self, vllm_model):
self.llm = vllm_model
self.rng = np.random.default_rng(seed=42)
def predict(
self,
inputs1: DataLoader[mteb.types.BatchedInput],
inputs2: DataLoader[mteb.types.BatchedInput],
*args,
**kwargs,
) -> np.ndarray:
queries = [text for batch in inputs1 for text in batch["text"]]
corpus = [text for batch in inputs2 for text in batch["text"]]
outputs = self.llm.score(
queries, corpus, truncate_prompt_tokens=-1, use_tqdm=False
)
scores = np.array(outputs)
return scores
class OpenAIClientMtebEncoder(VllmMtebEncoder):
def __init__(self, model_name: str, client):
self.model_name = model_name
self.client = client
self.rng = np.random.default_rng(seed=42)
def encode(
self,
inputs: DataLoader[mteb.types.BatchedInput],
*args,
**kwargs,
) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
sentences = [text for batch in inputs for text in batch["text"]]
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
embeddings = self.client.embeddings.create(
model=self.model_name, input=sentences
)
outputs = [d.embedding for d in embeddings.data]
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
class ScoreClientMtebEncoder(mteb.CrossEncoderProtocol):
mteb_model_meta = _empty_model_meta
def __init__(self, model_name: str, url):
self.model_name = model_name
self.url = url
self.rng = np.random.default_rng(seed=42)
def predict(
self,
inputs1: DataLoader[mteb.types.BatchedInput],
inputs2: DataLoader[mteb.types.BatchedInput],
*args,
**kwargs,
) -> np.ndarray:
queries = [text for batch in inputs1 for text in batch["text"]]
full_corpus = [text for batch in inputs2 for text in batch["text"]]
outputs = []
for query, corpus in zip(queries, full_corpus):
outputs.append(self.get_score(query, corpus))
scores = np.array(outputs)
return scores
def get_score(self, query, corpus):
response = requests.post(
self.url,
json={
"model": self.model_name,
"text_1": query,
"text_2": corpus,
"truncate_prompt_tokens": -1,
},
).json()
return response["data"][0]["score"]
class RerankClientMtebEncoder(ScoreClientMtebEncoder):
def get_score(self, query, corpus):
response = requests.post(
self.url,
json={
"model": self.model_name,
"query": query,
"documents": [corpus],
"truncate_prompt_tokens": -1,
},
).json()
return response["results"][0]["relevance_score"]
def run_mteb_embed_task(encoder: mteb.EncoderProtocol, tasks):
tasks = mteb.get_tasks(tasks=tasks)
results = mteb.evaluate(
encoder,
tasks,
cache=None,
show_progress_bar=False,
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_embed_models(
hf_runner,
vllm_runner,
model_info: EmbedModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
atol=MTEB_EMBED_TOL,
):
vllm_extra_kwargs = get_vllm_extra_kwargs(model_info, vllm_extra_kwargs)
# Test embed_dims, isnan and whether to use normalize
example_prompts = ["The chef prepared a delicious meal." * 1000]
with vllm_runner(
model_info.name,
runner="pooling",
max_model_len=model_info.max_model_len,
**vllm_extra_kwargs,
) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
# Confirm whether vllm is using the correct architecture
if model_info.architecture:
assert model_info.architecture in model_config.architectures
# Confirm whether vllm uses the correct default_pooling_type, which
# relates to whether chunked prefill and prefix caching are enabled
assert (
model_config._model_info.default_pooling_type
== model_info.default_pooling_type
)
vllm_main_score = run_mteb_embed_task(
VllmMtebEncoder(vllm_model), MTEB_EMBED_TASKS
)
vllm_dtype = vllm_model.llm.llm_engine.model_config.dtype
head_dtype = model_config.head_dtype
# Test embedding_size, isnan and whether to use normalize
vllm_outputs = vllm_model.embed(example_prompts, truncate_prompt_tokens=-1)
outputs_tensor = torch.tensor(vllm_outputs)
assert not torch.any(torch.isnan(outputs_tensor))
embedding_size = model_config.embedding_size
assert torch.tensor(vllm_outputs).shape[-1] == embedding_size
# Accelerate mteb test by setting
# SentenceTransformers mteb score to a constant
if model_info.mteb_score is None:
with hf_runner(
model_info.name,
is_sentence_transformer=True,
dtype=ci_envs.VLLM_CI_HF_DTYPE or model_info.hf_dtype,
) as hf_model:
# e.g. setting default parameters for the encode method of hf_runner
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
st_dtype = next(hf_model.model.parameters()).dtype
# Check embeddings close to hf outputs
hf_outputs = hf_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
else:
st_main_score = model_info.mteb_score
st_dtype = "Constant"
print("Model:", model_info.name)
print("VLLM:", f"dtype:{vllm_dtype}", f"head_dtype:{head_dtype}", vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
# We are not concerned that the vllm mteb results are better
# than SentenceTransformers, so we only perform one-sided testing.
assert st_main_score - vllm_main_score < atol
def run_mteb_rerank(cross_encoder: mteb.CrossEncoderProtocol, tasks, languages):
with tempfile.TemporaryDirectory() as prediction_folder:
bm25s = mteb.get_model("bm25s")
eval_splits = ["test"]
mteb_tasks: list[mteb.abstasks.AbsTaskRetrieval] = mteb.get_tasks(
tasks=tasks, languages=languages, eval_splits=eval_splits
)
mteb.evaluate(
bm25s,
mteb_tasks,
prediction_folder=prediction_folder,
show_progress_bar=False,
# don't save results for test runs
cache=None,
overwrite_strategy="always",
)
second_stage_tasks = []
for task in mteb_tasks:
second_stage_tasks.append(
task.convert_to_reranking(
prediction_folder,
top_k=10,
)
)
results = mteb.evaluate(
cross_encoder,
second_stage_tasks,
show_progress_bar=False,
cache=None,
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_rerank_models_hf(
hf_runner, model_name, hf_dtype="float32", hf_model_callback=None
):
with hf_runner(model_name, is_cross_encoder=True, dtype=hf_dtype) as hf_model:
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_rerank(
hf_model, tasks=MTEB_RERANK_TASKS, languages=MTEB_RERANK_LANGS
)
st_dtype = next(hf_model.model.model.parameters()).dtype
return st_main_score, st_dtype
def mteb_test_rerank_models(
hf_runner,
vllm_runner,
model_info: RerankModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
vllm_mteb_encoder=VllmMtebCrossEncoder,
atol=MTEB_RERANK_TOL,
):
vllm_extra_kwargs = get_vllm_extra_kwargs(model_info, vllm_extra_kwargs)
with vllm_runner(
model_info.name,
runner="pooling",
max_model_len=None,
max_num_seqs=8,
**vllm_extra_kwargs,
) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
# Confirm whether vllm is using the correct architecture
if model_info.architecture:
assert model_info.architecture in model_config.architectures
# Score API is only enabled for num_labels == 1
assert model_config.hf_config.num_labels == 1
# Confirm whether vllm uses the correct default_pooling_type, which
# relates to whether chunked prefill and prefix caching are enabled
assert (
model_config._model_info.default_pooling_type
== model_info.default_pooling_type
)
vllm_main_score = run_mteb_rerank(
vllm_mteb_encoder(vllm_model),
tasks=MTEB_RERANK_TASKS,
languages=MTEB_RERANK_LANGS,
)
vllm_dtype = model_config.dtype
head_dtype = model_config.head_dtype
# Accelerate mteb test by setting
# SentenceTransformers mteb score to a constant
if model_info.mteb_score is None:
st_main_score, st_dtype = mteb_test_rerank_models_hf(
hf_runner, model_info.name, model_info.hf_dtype, hf_model_callback
)
else:
st_main_score = model_info.mteb_score
st_dtype = "Constant"
print("Model:", model_info.name)
print("VLLM:", f"dtype:{vllm_dtype}", f"head_dtype:{head_dtype}", vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
# We are not concerned that the vllm mteb results are better
# than SentenceTransformers, so we only perform one-sided testing.
assert st_main_score - vllm_main_score < atol