mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 18:35:58 +08:00
Co-authored-by: Jiang Li <jiang1.li@intel.com> Co-authored-by: Abhilash Majumder <abhilash.majumder@intel.com> Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
356 lines
13 KiB
Python
356 lines
13 KiB
Python
""" Attention layer with torch scaled_dot_product_attention
|
|
and PagedAttention."""
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
|
|
from vllm._ipex_ops import ipex_ops
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionMetadata)
|
|
from vllm.attention.ops.paged_attn import (PagedAttention,
|
|
PagedAttentionMetadata)
|
|
|
|
_PARTITION_SIZE = 512
|
|
|
|
|
|
class IpexAttnBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "ipex-attn"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["IpexAttnBackendImpl"]:
|
|
return IpexAttnBackendImpl
|
|
|
|
@staticmethod
|
|
def make_metadata(*args, **kwargs) -> "IpexAttnMetadata":
|
|
return IpexAttnMetadata(*args, **kwargs)
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
|
|
num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: torch.Tensor,
|
|
) -> None:
|
|
PagedAttention.copy_blocks(kv_caches, src_to_dists)
|
|
|
|
|
|
@dataclass
|
|
class IpexAttnMetadata(AttentionMetadata, PagedAttentionMetadata):
|
|
"""Metadata for IpexAttnBackend.
|
|
"""
|
|
# Currently, input sequences can only contain all prompts
|
|
# or all decoding. True if all sequences are prompts.
|
|
is_prompt: bool
|
|
slot_mapping: torch.Tensor
|
|
seq_lens: Optional[List[int]]
|
|
seqlen_q: Optional[torch.Tensor]
|
|
max_seqlen: Optional[int]
|
|
|
|
def __post_init__(self):
|
|
# Set during the execution of the first attention op.
|
|
# It is a list because it is needed to set per prompt
|
|
# when alibi slopes is used. It is because of the limitation
|
|
# from xformer API.
|
|
# will not appear in the __repr__ and __init__
|
|
self.attn_bias: Optional[List[torch.Tensor]] = None
|
|
|
|
@property
|
|
def prefill_metadata(self) -> Optional["IpexAttnMetadata"]:
|
|
# Currently chunked prefill is not supported
|
|
if self.num_decode_tokens == 0:
|
|
assert self.num_prefills > 0
|
|
return self
|
|
|
|
return None
|
|
|
|
@property
|
|
def decode_metadata(self) -> Optional["IpexAttnMetadata"]:
|
|
# Currently chunked prefill is not supported
|
|
if self.num_prefills > 0:
|
|
assert self.num_decode_tokens == 0
|
|
return None
|
|
|
|
return self
|
|
|
|
|
|
class IpexAttnBackendImpl(AttentionImpl[IpexAttnMetadata]):
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
) -> None:
|
|
assert blocksparse_params is None, ValueError(
|
|
"Torch SPDA does not support block-sparse attention.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
self.sliding_window = sliding_window
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
self.need_mask = (self.alibi_slopes is not None
|
|
or self.sliding_window is not None)
|
|
|
|
supported_head_sizes = PagedAttention.get_supported_head_sizes()
|
|
if head_size not in supported_head_sizes:
|
|
raise ValueError(
|
|
f"Head size {head_size} is not supported by PagedAttention. "
|
|
f"Supported head sizes are: {supported_head_sizes}.")
|
|
if kv_cache_dtype != "auto":
|
|
raise NotImplementedError(
|
|
"IPEX backend does not support FP8 KV cache. "
|
|
"Please use xFormers backend instead.")
|
|
|
|
def split_kv_cache(
|
|
self,
|
|
kv_cache: torch.Tensor,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
x = 1
|
|
num_blocks = kv_cache.shape[1]
|
|
|
|
key_cache = kv_cache[0]
|
|
key_cache = key_cache.view(num_blocks, num_kv_heads, head_size // x,
|
|
-1, x)
|
|
value_cache = kv_cache[1]
|
|
value_cache = value_cache.view(num_blocks, num_kv_heads, head_size, -1)
|
|
return key_cache, value_cache
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: Optional[torch.Tensor],
|
|
attn_metadata: IpexAttnMetadata, # type: ignore
|
|
kv_scale: float = 1.0,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with IPEX varlen_attention and PagedAttention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
assert kv_scale == 1.0
|
|
num_tokens, hidden_size = query.shape
|
|
# Reshape the query, key, and value tensors.
|
|
query = query.view(-1, self.num_heads, self.head_size)
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
|
|
if kv_cache is not None:
|
|
key_cache, value_cache = self.split_kv_cache(
|
|
kv_cache, self.num_kv_heads, self.head_size)
|
|
ipex_ops.reshape_and_cache(
|
|
key,
|
|
value,
|
|
key_cache,
|
|
value_cache,
|
|
attn_metadata.slot_mapping.flatten(),
|
|
self.kv_cache_dtype,
|
|
kv_scale,
|
|
)
|
|
|
|
if attn_metadata.is_prompt:
|
|
assert attn_metadata.seq_lens is not None
|
|
if (kv_cache is None or attn_metadata.block_tables.numel() == 0):
|
|
if self.num_kv_heads != self.num_heads:
|
|
key = key.repeat_interleave(self.num_queries_per_kv, dim=1)
|
|
value = value.repeat_interleave(self.num_queries_per_kv,
|
|
dim=1)
|
|
|
|
if attn_metadata.attn_bias is None:
|
|
if self.alibi_slopes is not None:
|
|
att_masks = _make_alibi_bias(
|
|
self.alibi_slopes, query.dtype,
|
|
attn_metadata.seq_lens) # type: ignore
|
|
elif self.sliding_window is not None:
|
|
att_masks = _make_sliding_window_bias(
|
|
attn_metadata.seq_lens, self.sliding_window,
|
|
query.dtype) # type: ignore
|
|
else:
|
|
att_masks = _make_sliding_window_bias(
|
|
attn_metadata.seq_lens, None, dtype=query.dtype)
|
|
attn_metadata.attn_bias = att_masks
|
|
|
|
output = torch.empty(
|
|
(num_tokens, self.num_heads, self.head_size),
|
|
dtype=query.dtype,
|
|
device=query.device)
|
|
ipex_ops.varlen_attention(query,
|
|
key,
|
|
value,
|
|
output,
|
|
attn_metadata.seqlen_q,
|
|
attn_metadata.seqlen_q,
|
|
attn_metadata.max_seqlen,
|
|
attn_metadata.max_seqlen,
|
|
pdropout=0.0,
|
|
softmax_scale=self.scale,
|
|
zero_tensors=False,
|
|
is_causal=True,
|
|
return_softmax=False,
|
|
gen_=None)
|
|
else:
|
|
# prefix-enabled attention
|
|
raise RuntimeError(
|
|
"IPEX backend doesn't support prefix decoding.")
|
|
|
|
else:
|
|
# Decoding run.
|
|
max_seq_len = attn_metadata.max_decode_seq_len
|
|
output = torch.empty_like(query)
|
|
block_size = value_cache.shape[3]
|
|
num_seqs, num_heads, head_size = query.shape
|
|
max_num_partitions = ((max_seq_len + _PARTITION_SIZE - 1) //
|
|
_PARTITION_SIZE)
|
|
# NOTE(woosuk): We use a simple heuristic to decide whether to use
|
|
# PagedAttention V1 or V2. If the number of partitions is 1, we use
|
|
# V1 to avoid the overhead of reduction. Also, if the number of
|
|
# sequences or heads is large, we use V1 since there is enough work
|
|
# to parallelize.
|
|
# TODO(woosuk): Tune this heuristic.
|
|
# For context len > 8192, use V2 kernel to avoid shared memory
|
|
# shortage.
|
|
use_v1 = (max_seq_len <= 8192 and
|
|
(max_num_partitions == 1 or num_seqs * num_heads > 512))
|
|
if use_v1:
|
|
# Run PagedAttention V1.
|
|
ipex_ops.paged_attention_v1(
|
|
output,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
self.num_kv_heads,
|
|
self.scale,
|
|
attn_metadata.block_tables,
|
|
attn_metadata.seq_lens_tensor,
|
|
block_size,
|
|
max_seq_len,
|
|
self.alibi_slopes,
|
|
self.kv_cache_dtype,
|
|
kv_scale,
|
|
)
|
|
else:
|
|
# Run PagedAttention V2.
|
|
assert _PARTITION_SIZE % block_size == 0
|
|
tmp_output = torch.empty(
|
|
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
|
dtype=output.dtype,
|
|
device=output.device,
|
|
)
|
|
exp_sums = torch.empty(
|
|
size=(num_seqs, num_heads, max_num_partitions),
|
|
dtype=torch.float32,
|
|
device=output.device,
|
|
)
|
|
max_logits = torch.empty_like(exp_sums)
|
|
ipex_ops.paged_attention_v2(
|
|
output,
|
|
exp_sums,
|
|
max_logits,
|
|
tmp_output,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
self.num_kv_heads,
|
|
self.scale,
|
|
attn_metadata.block_tables,
|
|
attn_metadata.seq_lens_tensor,
|
|
block_size,
|
|
max_seq_len,
|
|
self.alibi_slopes,
|
|
self.kv_cache_dtype,
|
|
kv_scale,
|
|
)
|
|
|
|
# Reshape the output tensor.
|
|
return output.view(-1, self.num_heads * self.head_size)
|
|
|
|
|
|
def _make_alibi_bias(
|
|
alibi_slopes: torch.Tensor,
|
|
dtype: torch.dtype,
|
|
seq_lens: List[int],
|
|
) -> List[torch.Tensor]:
|
|
attn_biases = []
|
|
for seq_len in seq_lens:
|
|
bias = torch.arange(seq_len, dtype=dtype, device=alibi_slopes.device)
|
|
# NOTE(zhuohan): HF uses
|
|
# `bias = bias[None, :].repeat(seq_len, 1)`
|
|
# here. We find that both biases give the same results, but
|
|
# the bias below more accurately follows the original ALiBi
|
|
# paper.
|
|
bias = bias[None, :] - bias[:, None]
|
|
|
|
num_heads = alibi_slopes.shape[0]
|
|
bias = bias[None, :].repeat((num_heads, 1, 1))
|
|
bias.mul_(alibi_slopes[:, None, None])
|
|
inf_mask = torch.empty(
|
|
(1, seq_len, seq_len),
|
|
dtype=bias.dtype,
|
|
device=alibi_slopes.device).fill_(-torch.inf).triu_(diagonal=1)
|
|
attn_biases.append((bias + inf_mask).to(dtype))
|
|
|
|
return attn_biases
|
|
|
|
|
|
def _make_sliding_window_bias(
|
|
seq_lens: List[int],
|
|
window_size: Optional[int],
|
|
dtype: torch.dtype,
|
|
) -> List[torch.Tensor]:
|
|
attn_biases = []
|
|
for seq_len in seq_lens:
|
|
tensor = torch.full(
|
|
(1, seq_len, seq_len),
|
|
dtype=dtype,
|
|
fill_value=1,
|
|
)
|
|
shift = 0
|
|
mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore
|
|
if window_size is not None:
|
|
mask = torch.triu(mask, diagonal=shift - window_size + 1)
|
|
mask = torch.log(mask)
|
|
attn_biases.append(mask.to(dtype))
|
|
|
|
return attn_biases
|