mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 20:15:42 +08:00
Co-authored-by: Jiang Li <jiang1.li@intel.com> Co-authored-by: Abhilash Majumder <abhilash.majumder@intel.com> Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
402 lines
16 KiB
Python
402 lines
16 KiB
Python
import asyncio
|
|
import os
|
|
import pickle
|
|
from collections import defaultdict
|
|
from itertools import islice, repeat
|
|
from typing import (TYPE_CHECKING, Any, Awaitable, Dict, List, Optional, Set,
|
|
Tuple, Union)
|
|
|
|
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
|
|
ModelConfig, ParallelConfig, SchedulerConfig,
|
|
SpeculativeConfig, VisionLanguageConfig)
|
|
from vllm.executor.distributed_gpu_executor import ( # yapf: disable
|
|
DistributedGPUExecutor, DistributedGPUExecutorAsync)
|
|
from vllm.executor.ray_utils import RayWorkerWrapper, ray
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import ExecuteModelRequest, SamplerOutput
|
|
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
|
|
make_async)
|
|
|
|
if ray is not None:
|
|
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
|
|
|
if TYPE_CHECKING:
|
|
from ray.util.placement_group import PlacementGroup
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# If the env var is set, it uses the Ray's compiled DAG API
|
|
# which optimizes the control plane overhead.
|
|
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
|
|
USE_RAY_COMPILED_DAG = bool(os.getenv("VLLM_USE_RAY_COMPILED_DAG", 0))
|
|
|
|
|
|
class RayXPUExecutor(DistributedGPUExecutor):
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
cache_config: CacheConfig,
|
|
parallel_config: ParallelConfig,
|
|
scheduler_config: SchedulerConfig,
|
|
device_config: DeviceConfig,
|
|
load_config: LoadConfig,
|
|
lora_config: Optional[LoRAConfig],
|
|
vision_language_config: Optional[VisionLanguageConfig],
|
|
speculative_config: Optional[SpeculativeConfig],
|
|
) -> None:
|
|
assert device_config.device_type == "xpu"
|
|
assert (not speculative_config
|
|
), "Speculative decoding not yet supported for XPU backend"
|
|
|
|
self.model_config = model_config
|
|
self.cache_config = cache_config
|
|
self.load_config = load_config
|
|
self.lora_config = lora_config
|
|
self.parallel_config = parallel_config
|
|
self.scheduler_config = scheduler_config
|
|
self.device_config = device_config
|
|
self.vision_language_config = vision_language_config
|
|
|
|
placement_group = self.parallel_config.placement_group
|
|
|
|
# Disable Ray usage stats collection.
|
|
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
|
|
if ray_usage != "1":
|
|
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
|
|
|
|
# Create the parallel GPU workers.
|
|
self._init_workers_ray(placement_group)
|
|
|
|
# Profile the memory usage and initialize the cache.
|
|
self.forward_dag = None
|
|
if USE_RAY_COMPILED_DAG:
|
|
self.forward_dag = self._compiled_ray_dag()
|
|
|
|
# This is non-None when the execute model loop is running
|
|
# in the parallel workers. It's a coroutine in the AsyncLLMEngine case.
|
|
self.parallel_worker_tasks: Optional[Union[Any, Awaitable[Any]]] = None
|
|
# Updated by implementations that require additional args to be passed
|
|
# to the _run_workers execute_model call
|
|
self.extra_execute_model_run_workers_kwargs: Dict[str, Any] = {}
|
|
|
|
def _init_executor(self) -> None:
|
|
pass
|
|
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Determine the number of available KV blocks.
|
|
|
|
This invokes `determine_num_available_blocks` on each worker and takes
|
|
the min of the results, guaranteeing that the selected cache sizes are
|
|
compatible with all workers.
|
|
|
|
Returns:
|
|
- Tuple[num_gpu_blocks, num_cpu_blocks]
|
|
"""
|
|
# Get the maximum number of blocks that can be allocated on GPU and CPU.
|
|
num_blocks = self._run_workers("determine_num_available_blocks", )
|
|
|
|
# Since we use a shared centralized controller, we take the minimum
|
|
# number of blocks across all workers to make sure all the memory
|
|
# operators can be applied to all workers.
|
|
num_gpu_blocks = min(b[0] for b in num_blocks)
|
|
num_cpu_blocks = min(b[1] for b in num_blocks)
|
|
|
|
return num_gpu_blocks, num_cpu_blocks
|
|
|
|
def _init_workers_ray(self, placement_group: "PlacementGroup",
|
|
**ray_remote_kwargs):
|
|
if self.parallel_config.tensor_parallel_size == 1:
|
|
# For single GPU case, we use a ray worker with constrained memory.
|
|
num_gpus = self.cache_config.gpu_memory_utilization
|
|
else:
|
|
# Otherwise, the ray workers are allocated with a full GPU.
|
|
num_gpus = 1
|
|
|
|
# The driver dummy worker does not actually use any resources.
|
|
# It holds the resource for the driver worker.
|
|
self.driver_dummy_worker: Optional[RayWorkerWrapper] = None
|
|
# The remaining workers are the actual ray actors.
|
|
self.workers: List[RayWorkerWrapper] = []
|
|
|
|
# Create the workers.
|
|
driver_ip = get_ip()
|
|
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
|
|
if not bundle.get("GPU", 0):
|
|
continue
|
|
scheduling_strategy = PlacementGroupSchedulingStrategy(
|
|
placement_group=placement_group,
|
|
placement_group_capture_child_tasks=True,
|
|
placement_group_bundle_index=bundle_id,
|
|
)
|
|
worker = ray.remote(
|
|
num_cpus=0,
|
|
num_gpus=num_gpus,
|
|
scheduling_strategy=scheduling_strategy,
|
|
**ray_remote_kwargs,
|
|
)(RayWorkerWrapper).remote(
|
|
worker_module_name="vllm.worker.xpu_worker",
|
|
worker_class_name="XPUWorker",
|
|
trust_remote_code=self.model_config.trust_remote_code,
|
|
)
|
|
|
|
worker_ip = ray.get(worker.get_node_ip.remote())
|
|
if worker_ip == driver_ip and self.driver_dummy_worker is None:
|
|
# If the worker is on the same node as the driver, we use it
|
|
# as the resource holder for the driver process.
|
|
self.driver_dummy_worker = worker
|
|
self.driver_worker = RayWorkerWrapper(
|
|
worker_module_name="vllm.worker.xpu_worker",
|
|
worker_class_name="XPUWorker",
|
|
trust_remote_code=self.model_config.trust_remote_code,
|
|
)
|
|
else:
|
|
# Else, added to the list of workers.
|
|
self.workers.append(worker)
|
|
if self.driver_dummy_worker is None:
|
|
raise ValueError(
|
|
"Ray does not allocate any GPUs on the driver node. Consider "
|
|
"adjusting the Ray placement group or running the driver on a "
|
|
"GPU node.")
|
|
|
|
# Get the set of GPU IDs used on each node.
|
|
worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids",
|
|
use_dummy_driver=True)
|
|
|
|
node_workers = defaultdict(list)
|
|
node_gpus = defaultdict(list)
|
|
|
|
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids):
|
|
node_workers[node_id].append(i)
|
|
node_gpus[node_id].extend(gpu_ids)
|
|
for node_id, gpu_ids in node_gpus.items():
|
|
node_gpus[node_id] = sorted(gpu_ids)
|
|
|
|
# TODO: add env var for xpu
|
|
|
|
distributed_init_method = get_distributed_init_method(
|
|
driver_ip, get_open_port())
|
|
|
|
def collect_arg_helper_func(**kwargs):
|
|
# avoid writing `{"name": value}` manually
|
|
return kwargs
|
|
|
|
init_worker_all_kwargs = []
|
|
|
|
# Initialize the actual workers inside worker wrapper.
|
|
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids, ):
|
|
local_rank = node_workers[node_id].index(rank)
|
|
init_worker_all_kwargs.append(
|
|
collect_arg_helper_func(
|
|
model_config=self.model_config,
|
|
parallel_config=self.parallel_config,
|
|
scheduler_config=self.scheduler_config,
|
|
device_config=self.device_config,
|
|
cache_config=self.cache_config,
|
|
load_config=self.load_config,
|
|
local_rank=local_rank,
|
|
rank=rank,
|
|
distributed_init_method=distributed_init_method,
|
|
lora_config=self.lora_config,
|
|
vision_language_config=self.vision_language_config,
|
|
is_driver_worker=rank == 0,
|
|
))
|
|
self._run_workers("init_worker", all_kwargs=init_worker_all_kwargs)
|
|
|
|
self._run_workers("init_device")
|
|
self._run_workers(
|
|
"load_model",
|
|
max_concurrent_workers=self.parallel_config.
|
|
max_parallel_loading_workers,
|
|
)
|
|
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
"""Initialize the KV cache in all workers.
|
|
"""
|
|
|
|
# NOTE: We log here to avoid multiple logs when number of workers is
|
|
# greater than one. We could log in the engine, but not all executors
|
|
# have GPUs.
|
|
logger.info("# GPU blocks: %d, "
|
|
"# CPU blocks: %d", num_gpu_blocks, num_cpu_blocks)
|
|
|
|
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
|
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
|
|
|
self._run_workers("initialize_cache",
|
|
num_gpu_blocks=num_gpu_blocks,
|
|
num_cpu_blocks=num_cpu_blocks)
|
|
|
|
def _driver_execute_model(
|
|
self,
|
|
execute_model_req: Optional[ExecuteModelRequest] = None
|
|
) -> List[SamplerOutput]:
|
|
"""Run execute_model in the driver worker.
|
|
|
|
Passing None will cause the driver to stop the model execution
|
|
loop running in each of the remote workers.
|
|
"""
|
|
return self.driver_worker.execute_method("execute_model",
|
|
execute_model_req)
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
|
|
return self._run_workers(
|
|
"add_lora",
|
|
lora_request=lora_request,
|
|
)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
assert lora_id > 0, "lora_id must be greater than 0."
|
|
return self._run_workers(
|
|
"remove_lora",
|
|
lora_id=lora_id,
|
|
)
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
return self._run_workers("list_loras")
|
|
|
|
def _run_workers(
|
|
self,
|
|
method: str,
|
|
*args,
|
|
async_run_remote_workers_only: bool = False,
|
|
all_args: Optional[List[Tuple[Any, ...]]] = None,
|
|
all_kwargs: Optional[List[Dict[str, Any]]] = None,
|
|
use_dummy_driver: bool = False,
|
|
max_concurrent_workers: Optional[int] = None,
|
|
use_ray_compiled_dag: bool = False,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""Runs the given method on all workers. Can be used in the following
|
|
ways:
|
|
|
|
- args/kwargs: All workers share the same args/kwargs
|
|
- args/kwargs and driver_args/driver_kwargs: Driver worker has
|
|
different args
|
|
- all_args/all_kwargs: args/kwargs for each worker are specified
|
|
individually
|
|
"""
|
|
|
|
if max_concurrent_workers:
|
|
raise NotImplementedError(
|
|
"max_concurrent_workers is not supported yet.")
|
|
|
|
count = len(self.workers)
|
|
all_worker_args = repeat(args, count) if all_args is None \
|
|
else islice(all_args, 1, None)
|
|
all_worker_kwargs = repeat(kwargs, count) if all_kwargs is None \
|
|
else islice(all_kwargs, 1, None)
|
|
|
|
if use_ray_compiled_dag:
|
|
# Right now, compiled DAG can only accept a single
|
|
# input. TODO(sang): Fix it.
|
|
assert self.forward_dag is not None
|
|
output_channels = self.forward_dag.execute(1)
|
|
else:
|
|
# Start the ray workers first.
|
|
ray_worker_outputs = [
|
|
worker.execute_method.remote(method, *worker_args,
|
|
**worker_kwargs)
|
|
for (worker, worker_args, worker_kwargs
|
|
) in zip(self.workers, all_worker_args, all_worker_kwargs)
|
|
]
|
|
if async_run_remote_workers_only:
|
|
# Just return futures
|
|
return ray_worker_outputs
|
|
|
|
driver_args = args if all_args is None else all_args[0]
|
|
driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0]
|
|
|
|
# Start the driver worker after all the ray workers.
|
|
if not use_dummy_driver:
|
|
driver_worker_output = self.driver_worker.execute_method(
|
|
method, *driver_args, **driver_kwargs)
|
|
else:
|
|
assert self.driver_dummy_worker is not None
|
|
driver_worker_output = ray.get(
|
|
self.driver_dummy_worker.execute_method.remote(
|
|
method, *driver_args, **driver_kwargs))
|
|
# Get the results of the ray workers.
|
|
if self.workers:
|
|
if use_ray_compiled_dag:
|
|
try:
|
|
ray_worker_outputs = [
|
|
pickle.loads(chan.begin_read())
|
|
for chan in output_channels
|
|
]
|
|
finally:
|
|
# Has to call end_read in order to reuse the DAG.
|
|
for chan in output_channels:
|
|
chan.end_read()
|
|
else:
|
|
ray_worker_outputs = ray.get(ray_worker_outputs)
|
|
|
|
return [driver_worker_output] + ray_worker_outputs
|
|
|
|
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
|
|
"""Wait for futures returned from _run_workers() with
|
|
async_run_remote_workers_only to complete."""
|
|
ray.get(parallel_worker_tasks)
|
|
|
|
def _compiled_ray_dag(self):
|
|
import pkg_resources
|
|
required_version = "2.9"
|
|
current_version = pkg_resources.get_distribution("ray").version
|
|
if current_version < required_version:
|
|
raise ValueError(f"Ray version {required_version} or greater is "
|
|
f"required, but found {current_version}")
|
|
|
|
from ray.dag import InputNode, MultiOutputNode
|
|
assert self.parallel_config.worker_use_ray
|
|
|
|
# Right now, compiled DAG requires at least 1 arg. We send
|
|
# a dummy value for now. It will be fixed soon.
|
|
with InputNode() as input_data:
|
|
forward_dag = MultiOutputNode([
|
|
worker.execute_model_compiled_dag_remote.
|
|
bind( # type: ignore[attr-defined]
|
|
input_data) for worker in self.workers
|
|
])
|
|
return forward_dag.experimental_compile()
|
|
|
|
def check_health(self) -> None:
|
|
"""Raises an error if engine is unhealthy."""
|
|
self._check_if_any_actor_is_dead()
|
|
|
|
def _check_if_any_actor_is_dead(self):
|
|
if not self.workers:
|
|
return
|
|
|
|
dead_actors = []
|
|
for actor in self.workers:
|
|
actor_state = ray.state.actors(actor._ray_actor_id.hex()) # pylint: disable=protected-access
|
|
if actor_state["State"] == "DEAD":
|
|
dead_actors.append(actor)
|
|
if dead_actors:
|
|
raise RuntimeError("At least one Worker is dead. "
|
|
f"Dead Workers: {dead_actors}. ")
|
|
|
|
|
|
class RayXPUExecutorAsync(RayXPUExecutor, DistributedGPUExecutorAsync):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.driver_exec_method = make_async(self.driver_worker.execute_method)
|
|
|
|
async def _driver_execute_model_async(
|
|
self,
|
|
execute_model_req: Optional[ExecuteModelRequest] = None
|
|
) -> List[SamplerOutput]:
|
|
return await self.driver_exec_method("execute_model",
|
|
execute_model_req)
|
|
|
|
async def _start_worker_execution_loop(self):
|
|
coros = [
|
|
worker.execute_method.remote("start_worker_execution_loop")
|
|
for worker in self.workers
|
|
]
|
|
return await asyncio.gather(*coros)
|