mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 00:05:36 +08:00
206 lines
6.9 KiB
Python
206 lines
6.9 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
import PIL
|
|
from blake3 import blake3
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.inputs import PromptType
|
|
from vllm.logger import init_logger
|
|
from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalDataDict,
|
|
MultiModalKwargs, MultiModalRegistry)
|
|
from vllm.v1.utils import LRUDictCache
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# The idea of MM preprocessor caching is based on having a client and a server,
|
|
# where the client executes in the frontend process (=P0) and the server in the
|
|
# core process (=P1).
|
|
#
|
|
# -- Client: Executes the MM mapper and performs caching of the results.
|
|
# -- Server: Performs caching of the results
|
|
#
|
|
# The caching for both client and server is mirrored/similar, and this allows us
|
|
# to avoid the serialization of "mm_inputs" (like pixel values) between
|
|
# client (=P0) and server (=P1) processes.
|
|
|
|
# Both Client and Server must use the same cache size
|
|
# (to perform mirrored caching)
|
|
# TODO: Tune the MM cache size
|
|
MM_CACHE_SIZE = 256
|
|
|
|
|
|
class MMInputMapperClient:
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
|
|
):
|
|
self.model_config = model_config
|
|
self.mm_registry = mm_registry
|
|
self.multi_modal_input_mapper = mm_registry.create_input_mapper(
|
|
model_config)
|
|
self.mm_registry.init_mm_limits_per_prompt(model_config)
|
|
|
|
# Init cache
|
|
self.use_cache = not model_config.disable_mm_preprocessor_cache
|
|
self.mm_cache = LRUDictCache[str, MultiModalKwargs](MM_CACHE_SIZE)
|
|
|
|
# DEBUG: Set to None to disable
|
|
self.mm_debug_cache_hit_ratio_steps = None
|
|
self.mm_cache_hits = 0
|
|
self.mm_cache_total = 0
|
|
|
|
def cache_hit_ratio(self, steps):
|
|
if self.mm_cache_total > 0 and self.mm_cache_total % steps == 0:
|
|
logger.debug("MMInputMapper: cache_hit_ratio = %.2f ",
|
|
self.mm_cache_hits / self.mm_cache_total)
|
|
|
|
# TODO: Support modalities beyond image.
|
|
def process_inputs(
|
|
self,
|
|
mm_data: MultiModalDataDict,
|
|
mm_hashes: Optional[List[str]],
|
|
mm_processor_kwargs: Optional[Dict[str, Any]],
|
|
precomputed_mm_inputs: Optional[List[MultiModalKwargs]],
|
|
) -> List[MultiModalKwargs]:
|
|
if precomputed_mm_inputs is None:
|
|
image_inputs = mm_data["image"]
|
|
if not isinstance(image_inputs, list):
|
|
image_inputs = [image_inputs]
|
|
num_inputs = len(image_inputs)
|
|
else:
|
|
num_inputs = len(precomputed_mm_inputs)
|
|
|
|
# Sanity
|
|
if self.use_cache:
|
|
assert mm_hashes is not None
|
|
assert num_inputs == len(mm_hashes)
|
|
|
|
# Process each image input separately, so that later we can schedule
|
|
# them in a fine-grained manner.
|
|
# Apply caching (if enabled) and reuse precomputed inputs (if provided)
|
|
ret_inputs: List[MultiModalKwargs] = []
|
|
for input_id in range(num_inputs):
|
|
if self.mm_debug_cache_hit_ratio_steps is not None:
|
|
self.cache_hit_ratio(self.mm_debug_cache_hit_ratio_steps)
|
|
|
|
mm_input = None
|
|
if self.use_cache:
|
|
assert mm_hashes is not None
|
|
mm_hash = mm_hashes[input_id]
|
|
mm_input = self.mm_cache.get(mm_hash)
|
|
|
|
self.mm_cache_total += 1
|
|
if mm_input is None:
|
|
if precomputed_mm_inputs is not None:
|
|
# Reuse precomputed input (for merged preprocessor)
|
|
mm_input = precomputed_mm_inputs[input_id]
|
|
else:
|
|
# Apply MM mapper
|
|
mm_input = self.multi_modal_input_mapper(
|
|
{"image": [image_inputs[input_id]]},
|
|
mm_processor_kwargs=mm_processor_kwargs,
|
|
)
|
|
|
|
if self.use_cache:
|
|
# Add to cache
|
|
assert mm_hash is not None
|
|
self.mm_cache.put(mm_hash, mm_input)
|
|
else:
|
|
self.mm_cache_hits += 1
|
|
mm_input = None # Avoids sending mm_input to Server
|
|
|
|
ret_inputs.append(mm_input)
|
|
|
|
return ret_inputs
|
|
|
|
|
|
class MMInputMapperServer:
|
|
|
|
def __init__(self, model_config):
|
|
self.use_cache = not model_config.disable_mm_preprocessor_cache
|
|
self.mm_cache = LRUDictCache[str, MultiModalKwargs](MM_CACHE_SIZE)
|
|
|
|
def process_inputs(
|
|
self,
|
|
mm_inputs: List[Optional[MultiModalKwargs]],
|
|
mm_hashes: List[str],
|
|
) -> List[MultiModalKwargs]:
|
|
assert len(mm_inputs) == len(mm_hashes)
|
|
|
|
if not self.use_cache:
|
|
return mm_inputs
|
|
|
|
full_mm_inputs = []
|
|
for mm_input, mm_hash in zip(mm_inputs, mm_hashes):
|
|
assert mm_hash is not None
|
|
if mm_input is None:
|
|
mm_input = self.mm_cache.get(mm_hash)
|
|
assert mm_input is not None
|
|
else:
|
|
self.mm_cache.put(mm_hash, mm_input)
|
|
|
|
full_mm_inputs.append(mm_input)
|
|
|
|
return full_mm_inputs
|
|
|
|
|
|
class MMHasher:
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def hash_dummy_mm_data(
|
|
self,
|
|
mm_data: Optional[MultiModalDataDict]) -> Optional[List[str]]:
|
|
"""Hash user-defined dummy multimodal data used for profiling."""
|
|
|
|
if mm_data is None:
|
|
return None
|
|
|
|
image_inputs = mm_data['image']
|
|
|
|
# This is a temporary workaround for models (e.g, Molmo) that
|
|
# process multimodal data in the input processor (therefore
|
|
# image_inputs is MultiModalKwargs instead of raw input format).
|
|
# `raw_mm_data` with the original input format is expected
|
|
# in this case.
|
|
if isinstance(image_inputs, dict):
|
|
assert "raw_mm_data" in image_inputs and isinstance(
|
|
image_inputs["raw_mm_data"], PIL.Image.Image)
|
|
image_inputs = image_inputs.pop("raw_mm_data")
|
|
|
|
return self.hash_images(image_inputs)
|
|
|
|
def hash_prompt_mm_data(self, prompt: PromptType) -> Optional[List[str]]:
|
|
"""Hash multimodal data in the user input prompt if they exist."""
|
|
|
|
if "multi_modal_data" not in prompt:
|
|
return None
|
|
|
|
mm_data = prompt["multi_modal_data"]
|
|
image_inputs = mm_data["image"]
|
|
|
|
return self.hash_images(image_inputs)
|
|
|
|
def hash_images(self, image_inputs) -> Optional[List[str]]:
|
|
"""Hash PIL image objects to strings."""
|
|
if not isinstance(image_inputs, list):
|
|
image_inputs = [image_inputs]
|
|
assert len(image_inputs) > 0
|
|
|
|
ret = []
|
|
for image in image_inputs:
|
|
assert isinstance(image, PIL.Image.Image)
|
|
|
|
# Convert image to bytes
|
|
bytes = image.tobytes()
|
|
|
|
# Hash image bytes
|
|
hasher = blake3()
|
|
hasher.update(bytes)
|
|
ret.append(hasher.hexdigest())
|
|
|
|
return ret
|