mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 07:34:59 +08:00
469 lines
20 KiB
Python
469 lines
20 KiB
Python
import time
|
|
from typing import (AsyncGenerator, AsyncIterator, Callable, Dict, List,
|
|
Optional)
|
|
from typing import Sequence as GenericSequence
|
|
from typing import Tuple, cast
|
|
|
|
from fastapi import Request
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
|
from vllm.entrypoints.logger import RequestLogger
|
|
# yapf conflicts with isort for this block
|
|
# yapf: disable
|
|
from vllm.entrypoints.openai.protocol import (CompletionLogProbs,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionResponseChoice,
|
|
CompletionResponseStreamChoice,
|
|
CompletionStreamResponse,
|
|
UsageInfo)
|
|
# yapf: enable
|
|
from vllm.entrypoints.openai.serving_engine import (LoRAModulePath,
|
|
OpenAIServing,
|
|
PromptAdapterPath)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.guided_decoding import (
|
|
get_guided_decoding_logits_processor)
|
|
from vllm.outputs import RequestOutput
|
|
from vllm.sequence import Logprob
|
|
from vllm.tracing import (contains_trace_headers, extract_trace_headers,
|
|
log_tracing_disabled_warning)
|
|
from vllm.utils import merge_async_iterators, random_uuid
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
TypeTokenIDs = List[int]
|
|
TypeTopLogProbs = List[Optional[Dict[int, float]]]
|
|
TypeCreateLogProbsFn = Callable[
|
|
[TypeTokenIDs, TypeTopLogProbs, Optional[int], int], CompletionLogProbs]
|
|
|
|
|
|
class OpenAIServingCompletion(OpenAIServing):
|
|
|
|
def __init__(
|
|
self,
|
|
engine: AsyncLLMEngine,
|
|
model_config: ModelConfig,
|
|
served_model_names: List[str],
|
|
*,
|
|
lora_modules: Optional[List[LoRAModulePath]],
|
|
prompt_adapters: Optional[List[PromptAdapterPath]],
|
|
request_logger: Optional[RequestLogger],
|
|
):
|
|
super().__init__(engine=engine,
|
|
model_config=model_config,
|
|
served_model_names=served_model_names,
|
|
lora_modules=lora_modules,
|
|
prompt_adapters=prompt_adapters,
|
|
request_logger=request_logger)
|
|
|
|
async def create_completion(self, request: CompletionRequest,
|
|
raw_request: Request):
|
|
"""Completion API similar to OpenAI's API.
|
|
|
|
See https://platform.openai.com/docs/api-reference/completions/create
|
|
for the API specification. This API mimics the OpenAI Completion API.
|
|
|
|
NOTE: Currently we do not support the following feature:
|
|
- suffix (the language models we currently support do not support
|
|
suffix)
|
|
"""
|
|
error_check_ret = await self._check_model(request)
|
|
if error_check_ret is not None:
|
|
return error_check_ret
|
|
|
|
# Return error for unsupported features.
|
|
if request.suffix is not None:
|
|
return self.create_error_response(
|
|
"suffix is not currently supported")
|
|
|
|
model_name = self.served_model_names[0]
|
|
request_id = f"cmpl-{random_uuid()}"
|
|
created_time = int(time.time())
|
|
|
|
# Schedule the request and get the result generator.
|
|
generators: List[AsyncIterator[RequestOutput]] = []
|
|
try:
|
|
(
|
|
lora_request,
|
|
prompt_adapter_request,
|
|
) = self._maybe_get_adapters(request)
|
|
|
|
tokenizer = await self.engine.get_tokenizer(lora_request)
|
|
|
|
sampling_params = request.to_sampling_params()
|
|
decoding_config = await self.engine.get_decoding_config()
|
|
guided_decoding_backend = request.guided_decoding_backend \
|
|
or decoding_config.guided_decoding_backend
|
|
guided_decode_logit_processor = (
|
|
await
|
|
get_guided_decoding_logits_processor(guided_decoding_backend,
|
|
request, tokenizer))
|
|
if guided_decode_logit_processor is not None:
|
|
if sampling_params.logits_processors is None:
|
|
sampling_params.logits_processors = []
|
|
sampling_params.logits_processors.append(
|
|
guided_decode_logit_processor)
|
|
|
|
prompts = list(
|
|
self._tokenize_prompt_input_or_inputs(
|
|
request,
|
|
tokenizer,
|
|
request.prompt,
|
|
truncate_prompt_tokens=sampling_params.
|
|
truncate_prompt_tokens,
|
|
add_special_tokens=request.add_special_tokens,
|
|
))
|
|
|
|
for i, prompt_inputs in enumerate(prompts):
|
|
request_id_item = f"{request_id}-{i}"
|
|
|
|
self._log_inputs(request_id_item,
|
|
prompt_inputs,
|
|
params=sampling_params,
|
|
lora_request=lora_request,
|
|
prompt_adapter_request=prompt_adapter_request)
|
|
|
|
is_tracing_enabled = await self.engine.is_tracing_enabled()
|
|
trace_headers = None
|
|
if is_tracing_enabled:
|
|
trace_headers = extract_trace_headers(raw_request.headers)
|
|
if not is_tracing_enabled and contains_trace_headers(
|
|
raw_request.headers):
|
|
log_tracing_disabled_warning()
|
|
|
|
generator = self.engine.generate(
|
|
{"prompt_token_ids": prompt_inputs["prompt_token_ids"]},
|
|
sampling_params,
|
|
request_id_item,
|
|
lora_request=lora_request,
|
|
prompt_adapter_request=prompt_adapter_request,
|
|
trace_headers=trace_headers,
|
|
)
|
|
|
|
generators.append(generator)
|
|
except ValueError as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
return self.create_error_response(str(e))
|
|
|
|
result_generator: AsyncIterator[Tuple[
|
|
int, RequestOutput]] = merge_async_iterators(*generators)
|
|
|
|
# Similar to the OpenAI API, when n != best_of, we do not stream the
|
|
# results. In addition, we do not stream the results when use
|
|
# beam search.
|
|
stream = (request.stream
|
|
and (request.best_of is None or request.n == request.best_of)
|
|
and not request.use_beam_search)
|
|
|
|
# Streaming response
|
|
if stream:
|
|
return self.completion_stream_generator(request,
|
|
raw_request,
|
|
result_generator,
|
|
request_id,
|
|
created_time,
|
|
model_name,
|
|
num_prompts=len(prompts),
|
|
tokenizer=tokenizer)
|
|
|
|
# Non-streaming response
|
|
final_res_batch: List[Optional[RequestOutput]] = [None] * len(prompts)
|
|
try:
|
|
async for i, res in result_generator:
|
|
if await raw_request.is_disconnected():
|
|
# Abort the request if the client disconnects.
|
|
await self.engine.abort(f"{request_id}-{i}")
|
|
return self.create_error_response("Client disconnected")
|
|
final_res_batch[i] = res
|
|
|
|
for i, final_res in enumerate(final_res_batch):
|
|
assert final_res is not None
|
|
|
|
# The output should contain the input text
|
|
# We did not pass it into vLLM engine to avoid being redundant
|
|
# with the inputs token IDs
|
|
if final_res.prompt is None:
|
|
final_res.prompt = prompts[i]["prompt"]
|
|
|
|
final_res_batch_checked = cast(List[RequestOutput],
|
|
final_res_batch)
|
|
|
|
response = self.request_output_to_completion_response(
|
|
final_res_batch_checked,
|
|
request,
|
|
request_id,
|
|
created_time,
|
|
model_name,
|
|
tokenizer,
|
|
)
|
|
except ValueError as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
return self.create_error_response(str(e))
|
|
|
|
# When user requests streaming but we don't stream, we still need to
|
|
# return a streaming response with a single event.
|
|
if request.stream:
|
|
response_json = response.model_dump_json()
|
|
|
|
async def fake_stream_generator() -> AsyncGenerator[str, None]:
|
|
yield f"data: {response_json}\n\n"
|
|
yield "data: [DONE]\n\n"
|
|
|
|
return fake_stream_generator()
|
|
|
|
return response
|
|
|
|
async def completion_stream_generator(
|
|
self,
|
|
request: CompletionRequest,
|
|
raw_request: Request,
|
|
result_generator: AsyncIterator[Tuple[int, RequestOutput]],
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
num_prompts: int,
|
|
tokenizer: PreTrainedTokenizer,
|
|
) -> AsyncGenerator[str, None]:
|
|
num_choices = 1 if request.n is None else request.n
|
|
previous_texts = [""] * num_choices * num_prompts
|
|
previous_num_tokens = [0] * num_choices * num_prompts
|
|
has_echoed = [False] * num_choices * num_prompts
|
|
|
|
try:
|
|
async for prompt_idx, res in result_generator:
|
|
|
|
# Abort the request if the client disconnects.
|
|
if await raw_request.is_disconnected():
|
|
await self.engine.abort(f"{request_id}-{prompt_idx}")
|
|
raise StopAsyncIteration()
|
|
|
|
for output in res.outputs:
|
|
i = output.index + prompt_idx * num_choices
|
|
# TODO(simon): optimize the performance by avoiding full
|
|
# text O(n^2) sending.
|
|
|
|
assert request.max_tokens is not None
|
|
if request.echo and request.max_tokens == 0:
|
|
# only return the prompt
|
|
delta_text = res.prompt
|
|
delta_token_ids = res.prompt_token_ids
|
|
out_logprobs = res.prompt_logprobs
|
|
has_echoed[i] = True
|
|
elif (request.echo and request.max_tokens > 0
|
|
and not has_echoed[i]):
|
|
# echo the prompt and first token
|
|
delta_text = res.prompt + output.text
|
|
delta_token_ids = (res.prompt_token_ids +
|
|
output.token_ids)
|
|
out_logprobs = res.prompt_logprobs + (output.logprobs
|
|
or [])
|
|
has_echoed[i] = True
|
|
else:
|
|
# return just the delta
|
|
delta_text = output.text[len(previous_texts[i]):]
|
|
delta_token_ids = output.token_ids[
|
|
previous_num_tokens[i]:]
|
|
out_logprobs = output.logprobs[previous_num_tokens[
|
|
i]:] if output.logprobs else None
|
|
|
|
if request.logprobs is not None:
|
|
assert out_logprobs is not None, (
|
|
"Did not output logprobs")
|
|
logprobs = self._create_completion_logprobs(
|
|
token_ids=delta_token_ids,
|
|
top_logprobs=out_logprobs,
|
|
num_output_top_logprobs=request.logprobs,
|
|
tokenizer=tokenizer,
|
|
initial_text_offset=len(previous_texts[i]),
|
|
)
|
|
else:
|
|
logprobs = None
|
|
|
|
previous_texts[i] = output.text
|
|
previous_num_tokens[i] = len(output.token_ids)
|
|
finish_reason = output.finish_reason
|
|
stop_reason = output.stop_reason
|
|
|
|
chunk = CompletionStreamResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=[
|
|
CompletionResponseStreamChoice(
|
|
index=i,
|
|
text=delta_text,
|
|
logprobs=logprobs,
|
|
finish_reason=finish_reason,
|
|
stop_reason=stop_reason,
|
|
)
|
|
])
|
|
if (request.stream_options
|
|
and request.stream_options.include_usage):
|
|
if (request.stream_options.continuous_usage_stats
|
|
or output.finish_reason is not None):
|
|
prompt_tokens = len(res.prompt_token_ids)
|
|
completion_tokens = len(output.token_ids)
|
|
usage = UsageInfo(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
if request.stream_options.continuous_usage_stats:
|
|
chunk.usage = usage
|
|
else:
|
|
chunk.usage = None
|
|
|
|
response_json = chunk.model_dump_json(exclude_unset=False)
|
|
yield f"data: {response_json}\n\n"
|
|
|
|
if (request.stream_options
|
|
and request.stream_options.include_usage):
|
|
final_usage_chunk = CompletionStreamResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=[],
|
|
usage=usage,
|
|
)
|
|
final_usage_data = (final_usage_chunk.model_dump_json(
|
|
exclude_unset=False, exclude_none=True))
|
|
yield f"data: {final_usage_data}\n\n"
|
|
|
|
except ValueError as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
data = self.create_streaming_error_response(str(e))
|
|
yield f"data: {data}\n\n"
|
|
yield "data: [DONE]\n\n"
|
|
|
|
def request_output_to_completion_response(
|
|
self,
|
|
final_res_batch: List[RequestOutput],
|
|
request: CompletionRequest,
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
tokenizer: PreTrainedTokenizer,
|
|
) -> CompletionResponse:
|
|
choices: List[CompletionResponseChoice] = []
|
|
num_prompt_tokens = 0
|
|
num_generated_tokens = 0
|
|
|
|
for final_res in final_res_batch:
|
|
prompt_token_ids = final_res.prompt_token_ids
|
|
prompt_logprobs = final_res.prompt_logprobs
|
|
prompt_text = final_res.prompt
|
|
|
|
for output in final_res.outputs:
|
|
assert request.max_tokens is not None
|
|
if request.echo and request.max_tokens == 0:
|
|
token_ids = prompt_token_ids
|
|
out_logprobs = prompt_logprobs
|
|
output_text = prompt_text
|
|
elif request.echo and request.max_tokens > 0:
|
|
token_ids = prompt_token_ids + list(output.token_ids)
|
|
out_logprobs = (prompt_logprobs + output.logprobs
|
|
if request.logprobs is not None else None)
|
|
output_text = prompt_text + output.text
|
|
else:
|
|
token_ids = output.token_ids
|
|
out_logprobs = output.logprobs
|
|
output_text = output.text
|
|
|
|
if request.logprobs is not None:
|
|
assert out_logprobs is not None, "Did not output logprobs"
|
|
logprobs = self._create_completion_logprobs(
|
|
token_ids=token_ids,
|
|
top_logprobs=out_logprobs,
|
|
tokenizer=tokenizer,
|
|
num_output_top_logprobs=request.logprobs,
|
|
)
|
|
else:
|
|
logprobs = None
|
|
|
|
choice_data = CompletionResponseChoice(
|
|
index=len(choices),
|
|
text=output_text,
|
|
logprobs=logprobs,
|
|
finish_reason=output.finish_reason,
|
|
stop_reason=output.stop_reason,
|
|
)
|
|
choices.append(choice_data)
|
|
|
|
num_prompt_tokens += len(prompt_token_ids)
|
|
num_generated_tokens += sum(
|
|
len(output.token_ids) for output in final_res.outputs)
|
|
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
completion_tokens=num_generated_tokens,
|
|
total_tokens=num_prompt_tokens + num_generated_tokens,
|
|
)
|
|
|
|
return CompletionResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=choices,
|
|
usage=usage,
|
|
)
|
|
|
|
def _create_completion_logprobs(
|
|
self,
|
|
token_ids: GenericSequence[int],
|
|
top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]],
|
|
num_output_top_logprobs: int,
|
|
tokenizer: PreTrainedTokenizer,
|
|
initial_text_offset: int = 0,
|
|
) -> CompletionLogProbs:
|
|
"""Create logprobs for OpenAI Completion API."""
|
|
out_text_offset: List[int] = []
|
|
out_token_logprobs: List[Optional[float]] = []
|
|
out_tokens: List[str] = []
|
|
out_top_logprobs: List[Optional[Dict[str, float]]] = []
|
|
|
|
last_token_len = 0
|
|
|
|
for i, token_id in enumerate(token_ids):
|
|
step_top_logprobs = top_logprobs[i]
|
|
if step_top_logprobs is None:
|
|
token = tokenizer.decode(token_id)
|
|
out_tokens.append(token)
|
|
out_token_logprobs.append(None)
|
|
out_top_logprobs.append(None)
|
|
else:
|
|
token = self._get_decoded_token(step_top_logprobs[token_id],
|
|
token_id, tokenizer)
|
|
token_logprob = max(step_top_logprobs[token_id].logprob,
|
|
-9999.0)
|
|
out_tokens.append(token)
|
|
out_token_logprobs.append(token_logprob)
|
|
|
|
# makes sure to add the top num_output_top_logprobs + 1
|
|
# logprobs, as defined in the openai API
|
|
# (cf. https://github.com/openai/openai-openapi/blob/
|
|
# 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
|
|
out_top_logprobs.append({
|
|
# Convert float("-inf") to the
|
|
# JSON-serializable float that OpenAI uses
|
|
self._get_decoded_token(top_lp[1], top_lp[0], tokenizer):
|
|
max(top_lp[1].logprob, -9999.0)
|
|
for i, top_lp in enumerate(step_top_logprobs.items())
|
|
if num_output_top_logprobs >= i
|
|
})
|
|
|
|
if len(out_text_offset) == 0:
|
|
out_text_offset.append(initial_text_offset)
|
|
else:
|
|
out_text_offset.append(out_text_offset[-1] + last_token_len)
|
|
last_token_len = len(token)
|
|
|
|
return CompletionLogProbs(
|
|
text_offset=out_text_offset,
|
|
token_logprobs=out_token_logprobs,
|
|
tokens=out_tokens,
|
|
top_logprobs=out_top_logprobs,
|
|
)
|