mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-28 11:38:41 +08:00
Signed-off-by: princepride <wangzhipeng628@gmail.com> Signed-off-by: 汪志鹏 <wangzhipeng628@gmail.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
585 lines
20 KiB
Python
585 lines
20 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
|
"""Inference-only BAGEL model compatible with HuggingFace weights.
|
|
|
|
BAGEL is a unified multimodal model for image understanding and generation.
|
|
For vLLM, we focus on the image understanding (vision-to-text) capabilities.
|
|
"""
|
|
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Any, Literal, TypeAlias
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
)
|
|
from vllm.multimodal.parse import MultiModalDataItems
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
PromptReplacement,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.processors.bagel import BagelProcessor
|
|
from vllm.utils.tensor_schema import TensorSchema
|
|
|
|
from .interfaces import (
|
|
MultiModalEmbeddings,
|
|
SupportsLoRA,
|
|
SupportsMultiModal,
|
|
SupportsPP,
|
|
)
|
|
from .siglip import SiglipVisionModel
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class BagelImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- c: Number of channels (3)
|
|
- h: Height of each image
|
|
- w: Width of each image
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
pixel_values: torch.Tensor # Shape: (bn, 3, h, w)
|
|
|
|
|
|
BagelImageInputs: TypeAlias = BagelImagePixelInputs
|
|
|
|
|
|
class BagelVisionMLP(nn.Module):
|
|
"""MLP connector for vision features."""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
hidden_features: int,
|
|
out_features: int,
|
|
act_layer: str = "gelu_pytorch_tanh",
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.fc1 = ColumnParallelLinear(
|
|
in_features,
|
|
hidden_features,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc1",
|
|
)
|
|
self.act = get_act_fn(act_layer)
|
|
self.fc2 = RowParallelLinear(
|
|
hidden_features,
|
|
out_features,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc2",
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, _ = self.fc1(x)
|
|
x = self.act(x)
|
|
x, _ = self.fc2(x)
|
|
return x
|
|
|
|
|
|
class PositionEmbedding(nn.Module):
|
|
"""2D position embedding for vision tokens using sin-cos embeddings."""
|
|
|
|
def __init__(self, max_num_patch_per_side: int, hidden_size: int):
|
|
super().__init__()
|
|
self.max_num_patch_per_side = max_num_patch_per_side
|
|
self.hidden_size = hidden_size
|
|
|
|
# Create learnable 2D position embeddings (frozen sin-cos)
|
|
pos_embed = self._get_2d_sincos_pos_embed(hidden_size, max_num_patch_per_side)
|
|
self.register_buffer(
|
|
"pos_embed",
|
|
torch.from_numpy(pos_embed).float(),
|
|
persistent=False,
|
|
)
|
|
|
|
@staticmethod
|
|
def _get_2d_sincos_pos_embed(embed_dim: int, grid_size: int):
|
|
"""Generate 2D sin-cos position embeddings."""
|
|
import numpy as np
|
|
|
|
grid_h = np.arange(grid_size, dtype=np.float32)
|
|
grid_w = np.arange(grid_size, dtype=np.float32)
|
|
grid = np.meshgrid(grid_w, grid_h) # w goes first
|
|
grid = np.stack(grid, axis=0)
|
|
grid = grid.reshape([2, 1, grid_size, grid_size])
|
|
pos_embed = PositionEmbedding._get_2d_sincos_pos_embed_from_grid(
|
|
embed_dim, grid
|
|
)
|
|
return pos_embed
|
|
|
|
@staticmethod
|
|
def _get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid):
|
|
"""Generate 2D sin-cos position embeddings from grid."""
|
|
import numpy as np
|
|
|
|
assert embed_dim % 2 == 0
|
|
# use half of dimensions to encode grid_h
|
|
emb_h = PositionEmbedding._get_1d_sincos_pos_embed_from_grid(
|
|
embed_dim // 2, grid[0]
|
|
)
|
|
emb_w = PositionEmbedding._get_1d_sincos_pos_embed_from_grid(
|
|
embed_dim // 2, grid[1]
|
|
)
|
|
emb = np.concatenate([emb_h, emb_w], axis=1)
|
|
return emb
|
|
|
|
@staticmethod
|
|
def _get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos):
|
|
"""Generate 1D sin-cos position embeddings."""
|
|
import numpy as np
|
|
|
|
assert embed_dim % 2 == 0
|
|
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
|
omega /= embed_dim / 2.0
|
|
omega = 1.0 / 10000**omega
|
|
|
|
pos = pos.reshape(-1)
|
|
out = np.einsum("m,d->md", pos, omega)
|
|
|
|
emb_sin = np.sin(out)
|
|
emb_cos = np.cos(out)
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1)
|
|
return emb
|
|
|
|
def forward(self, position_ids: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
position_ids: Flattened position IDs, shape (N,) where each ID
|
|
corresponds to a position in the flattened grid
|
|
Returns:
|
|
Position embeddings of shape (N, hidden_size)
|
|
"""
|
|
# Ensure position_ids are on the same device as pos_embed
|
|
position_ids = position_ids.to(self.pos_embed.device)
|
|
return self.pos_embed[position_ids]
|
|
|
|
|
|
class BagelProcessingInfo(BaseProcessingInfo):
|
|
"""Processing information for BAGEL model."""
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> BagelProcessor:
|
|
from vllm.transformers_utils.processor import cached_get_image_processor
|
|
|
|
image_processor = cached_get_image_processor(
|
|
self.ctx.model_config.model,
|
|
revision=self.ctx.model_config.revision,
|
|
trust_remote_code=self.ctx.model_config.trust_remote_code,
|
|
)
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
return BagelProcessor(
|
|
image_processor=image_processor,
|
|
tokenizer=tokenizer,
|
|
**kwargs,
|
|
)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"image": None}
|
|
|
|
def get_mm_max_tokens_per_item(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> Mapping[str, int]:
|
|
hf_config = self.get_hf_config()
|
|
# Calculate max tokens per image
|
|
# For BAGEL: (vit_max_num_patch_per_side) ** 2
|
|
max_num_patches = hf_config.vit_max_num_patch_per_side**2
|
|
return {"image": max_num_patches}
|
|
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
hf_config = self.get_hf_config()
|
|
vit_config = hf_config.vit_config
|
|
patch_size = vit_config.patch_size
|
|
|
|
# Calculate number of patches
|
|
num_patches_h = image_height // patch_size
|
|
num_patches_w = image_width // patch_size
|
|
return num_patches_h * num_patches_w
|
|
|
|
|
|
class BagelDummyInputsBuilder(BaseDummyInputsBuilder[BagelProcessingInfo]):
|
|
"""Build dummy inputs for BAGEL model profiling."""
|
|
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
# Use a simple placeholder for each image
|
|
return "<|image_pad|>" * num_images
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
hf_config = self.info.get_hf_config()
|
|
vit_config = hf_config.vit_config
|
|
|
|
# Use the configured image size
|
|
image_size = vit_config.image_size
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=image_size,
|
|
height=image_size,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
),
|
|
}
|
|
|
|
|
|
class BagelMultiModalProcessor(BaseMultiModalProcessor[BagelProcessingInfo]):
|
|
"""Multimodal processor for BAGEL model."""
|
|
|
|
def _hf_processor_applies_updates(
|
|
self,
|
|
prompt_text: str,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
) -> bool:
|
|
return False
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptReplacement]:
|
|
"""Replace image placeholders with the correct number of tokens."""
|
|
hf_config = self.info.get_hf_config()
|
|
|
|
# Get the tokenizer to look up the image token ID
|
|
tokenizer = self.info.get_tokenizer()
|
|
image_token_id = tokenizer.get_vocab().get("<|image_pad|>")
|
|
if image_token_id is None:
|
|
raise ValueError(
|
|
"Image token '<|image_pad|>' not found in tokenizer vocabulary"
|
|
)
|
|
|
|
def get_replacement_bagel(item_idx: int):
|
|
# For BAGEL, calculate number of tokens based on max patch size
|
|
num_tokens = hf_config.vit_max_num_patch_per_side**2
|
|
# Use the image token ID from tokenizer
|
|
return [image_token_id] * num_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[image_token_id],
|
|
replacement=get_replacement_bagel,
|
|
)
|
|
]
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: Any,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return {
|
|
"pixel_values": MultiModalFieldConfig.batched("image"),
|
|
}
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
BagelMultiModalProcessor,
|
|
info=BagelProcessingInfo,
|
|
dummy_inputs=BagelDummyInputsBuilder,
|
|
)
|
|
class BagelForConditionalGeneration(
|
|
nn.Module, SupportsMultiModal, SupportsLoRA, SupportsPP
|
|
):
|
|
"""
|
|
BAGEL: A unified multimodal model for image understanding and generation.
|
|
|
|
For vLLM, we focus on the image understanding (vision-to-text) capabilities.
|
|
The image generation part is not supported in vLLM.
|
|
"""
|
|
|
|
# Weight mapping from HF to vLLM
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"language_model.": "language_model.",
|
|
"vit_model.": "vit_model.",
|
|
"connector.": "connector.",
|
|
"vit_pos_embed.": "vit_pos_embed.",
|
|
}
|
|
)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
# Ensure we have a BagelConfig (check by name to handle trust_remote_code)
|
|
# When trust_remote_code=True, the config comes from transformers_modules
|
|
if type(config).__name__ != "BagelConfig":
|
|
raise ValueError(
|
|
f"Expected BagelConfig, got {type(config).__name__}. "
|
|
"Make sure the model config is properly loaded."
|
|
)
|
|
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
# Initialize language model (Qwen2)
|
|
# Pass the llm_config from BagelConfig to initialize Qwen2 properly
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.llm_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
architectures=["Qwen2ForCausalLM"],
|
|
)
|
|
|
|
# Initialize vision model (SigLIP) if visual understanding is enabled
|
|
if config.visual_und:
|
|
# Fix vit_config: checkpoint has 26 layers (0-25) but config says 27
|
|
# Also disable head as it's not in checkpoint
|
|
vit_config = config.vit_config
|
|
if vit_config.num_hidden_layers == 27:
|
|
logger.warning(
|
|
"Overriding vit_config.num_hidden_layers from 27 to 26 "
|
|
"to match the Bagel model checkpoint."
|
|
)
|
|
vit_config.num_hidden_layers = 26
|
|
if not hasattr(vit_config, "vision_use_head"):
|
|
logger.warning(
|
|
"Setting vit_config.vision_use_head to False as it is not "
|
|
"present in the Bagel model checkpoint."
|
|
)
|
|
vit_config.vision_use_head = False
|
|
|
|
self.vit_model = SiglipVisionModel(
|
|
config=vit_config,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "vit_model"),
|
|
)
|
|
|
|
# Initialize connector (MLP)
|
|
vit_hidden_size = config.vit_config.hidden_size
|
|
llm_hidden_size = config.llm_config.hidden_size
|
|
|
|
self.connector = BagelVisionMLP(
|
|
in_features=vit_hidden_size,
|
|
hidden_features=llm_hidden_size,
|
|
out_features=llm_hidden_size,
|
|
act_layer=config.connector_act,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "connector"),
|
|
)
|
|
|
|
# Position embedding for vision tokens
|
|
self.vit_pos_embed = PositionEmbedding(
|
|
max_num_patch_per_side=config.vit_max_num_patch_per_side,
|
|
hidden_size=llm_hidden_size,
|
|
)
|
|
else:
|
|
self.vit_model = None
|
|
self.connector = None
|
|
self.vit_pos_embed = None
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> BagelImageInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
|
|
if pixel_values is None:
|
|
return None
|
|
|
|
return BagelImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
)
|
|
|
|
def _process_image_input(
|
|
self, image_input: BagelImageInputs
|
|
) -> tuple[torch.Tensor, ...]:
|
|
"""Process image inputs through vision encoder and connector."""
|
|
pixel_values = image_input["pixel_values"]
|
|
|
|
# Handle potential extra batch dimension
|
|
# Expected shape: (batch_size * num_images, 3, H, W)
|
|
# But might receive: (batch_size, num_images, 3, H, W)
|
|
if pixel_values.ndim == 5:
|
|
# Flatten batch and num_images dimensions
|
|
batch_size, num_images, channels, height, width = pixel_values.shape
|
|
pixel_values = pixel_values.reshape(
|
|
batch_size * num_images, channels, height, width
|
|
)
|
|
|
|
# Get vision features from SigLIP
|
|
# pixel_values shape: (batch_size * num_images, 3, H, W)
|
|
vision_features = self.vit_model(pixel_values)
|
|
|
|
# Pass through connector
|
|
vision_embeds = self.connector(vision_features)
|
|
|
|
# Add position embeddings
|
|
batch_size, num_patches, hidden_size = vision_embeds.shape
|
|
patch_size = self.config.vit_config.patch_size
|
|
image_size = self.config.vit_config.image_size
|
|
|
|
# Calculate grid dimensions
|
|
num_patches_per_side = image_size // patch_size
|
|
|
|
# Create flattened position IDs (0 to num_patches-1)
|
|
# For BAGEL, we use extrapolate mode by default
|
|
h_coords = torch.arange(num_patches_per_side, device=vision_embeds.device)
|
|
w_coords = torch.arange(num_patches_per_side, device=vision_embeds.device)
|
|
position_ids = (
|
|
h_coords[:, None] * self.config.vit_max_num_patch_per_side + w_coords
|
|
).flatten()
|
|
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1).flatten()
|
|
|
|
# Add position embeddings
|
|
pos_embeds = self.vit_pos_embed(position_ids)
|
|
pos_embeds = pos_embeds.reshape(batch_size, num_patches, hidden_size)
|
|
# Ensure pos_embeds are on the same device as vision_embeds
|
|
pos_embeds = pos_embeds.to(vision_embeds.device)
|
|
vision_embeds = vision_embeds + pos_embeds
|
|
|
|
# Split by image
|
|
return tuple(vision_embeds)
|
|
|
|
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
"""Get multimodal embeddings from input."""
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
|
|
return self._process_image_input(image_input)
|
|
|
|
def get_language_model(self) -> nn.Module:
|
|
return self.language_model
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
"""Run forward pass for BAGEL.
|
|
|
|
Args:
|
|
input_ids: Flattened (concatenated) input_ids corresponding to a batch.
|
|
positions: Flattened (concatenated) position ids corresponding to a batch.
|
|
intermediate_tensors: Intermediate tensors from prior forward pass.
|
|
inputs_embeds: Optional tensor of input embeddings.
|
|
"""
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
"""Load weights from checkpoint."""
|
|
skip_prefixes = []
|
|
# Skip vit_pos_embed.pos_embed as it's handled by PositionEmbedding module
|
|
skip_prefixes.append("vit_pos_embed.pos_embed")
|
|
|
|
# If visual understanding is disabled, skip vision-related weights
|
|
if self.vit_model is None:
|
|
skip_prefixes.extend(["vit_model.", "connector.", "vit_pos_embed"])
|
|
|
|
# Skip generation-related weights since we only support text2text and image2text
|
|
# Filter out all image generation components:
|
|
# - 'moe_gen': MoE generation weights
|
|
# - 'latent_pos_embed': Latent position embeddings for VAE
|
|
# - 'llm2vae', 'vae2llm': LLM-VAE projections
|
|
# - 'time_embedder': Timestep embeddings for diffusion
|
|
# - VAE encoder/decoder: Use specific prefixes to avoid matching vision encoder
|
|
generation_keywords = [
|
|
"moe_gen",
|
|
"latent_pos_embed",
|
|
"llm2vae",
|
|
"vae2llm",
|
|
"time_embedder",
|
|
]
|
|
vae_prefixes = [
|
|
"decoder.",
|
|
"encoder.",
|
|
] # VAE encoder/decoder, not vision encoder
|
|
filtered_weights = []
|
|
for name, tensor in weights:
|
|
# Skip generation-related keywords
|
|
if any(skip in name for skip in generation_keywords):
|
|
continue
|
|
if any(name.startswith(prefix) for prefix in vae_prefixes):
|
|
continue
|
|
|
|
if "patch_embedding.weight" in name and tensor.ndim == 2:
|
|
out_channels = tensor.shape[0]
|
|
in_features = tensor.shape[1]
|
|
patch_size = self.config.vit_config.patch_size
|
|
in_channels = self.config.vit_config.num_channels
|
|
if in_features == in_channels * patch_size * patch_size:
|
|
tensor = tensor.reshape(
|
|
out_channels, patch_size, patch_size, in_channels
|
|
)
|
|
tensor = tensor.permute(0, 3, 1, 2).contiguous()
|
|
|
|
filtered_weights.append((name, tensor))
|
|
|
|
loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
|
|
return loader.load_weights(filtered_weights, mapper=self.hf_to_vllm_mapper)
|