mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 08:45:00 +08:00
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn> Signed-off-by: Roger Wang <hey@rogerw.io> Co-authored-by: Roger Wang <hey@rogerw.io>
348 lines
12 KiB
Python
348 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Helpers for building inputs that can be leveraged for different test types."""
|
|
|
|
from collections.abc import Callable, Iterable
|
|
from pathlib import PosixPath
|
|
from typing import Any
|
|
|
|
import numpy.typing as npt
|
|
import torch
|
|
|
|
from vllm.multimodal.audio import AudioResampler
|
|
from vllm.multimodal.image import rescale_image_size
|
|
from vllm.multimodal.video import (
|
|
rescale_video_size,
|
|
resize_video,
|
|
sample_frames_from_video,
|
|
)
|
|
|
|
from .....conftest import AudioTestAssets, ImageTestAssets, VideoTestAssets
|
|
from .types import (
|
|
SINGLE_AUDIO_BASE_PROMPT,
|
|
SINGLE_IMAGE_BASE_PROMPTS,
|
|
TEST_AUDIO_PLACEHOLDER,
|
|
TEST_IMG_PLACEHOLDER,
|
|
TEST_VIDEO_PLACEHOLDER,
|
|
VIDEO_BASE_PROMPT,
|
|
ImageSizeWrapper,
|
|
PromptWithMultiModalInput,
|
|
SizeType,
|
|
VLMTestInfo,
|
|
)
|
|
|
|
|
|
def replace_test_placeholder(
|
|
prompt: str, mm_idx_to_prompt: Callable[[int], str], test_placeholder: str
|
|
) -> str:
|
|
"""Given a prompt, replaces each test placeholder with the
|
|
model-specific tag.
|
|
"""
|
|
prompt_segments = prompt.split(test_placeholder)
|
|
img_prompt = prompt_segments[0]
|
|
for placeholder_idx, next_seg in enumerate(prompt_segments[1:], start=1):
|
|
img_prompt += mm_idx_to_prompt(placeholder_idx)
|
|
img_prompt += next_seg
|
|
return img_prompt
|
|
|
|
|
|
def get_model_prompts(
|
|
base_prompts: Iterable[str],
|
|
img_idx_to_prompt: Callable[[int], str] | None,
|
|
video_idx_to_prompt: Callable[[int], str] | None,
|
|
audio_idx_to_prompt: Callable[[int], str] | None,
|
|
prompt_formatter: Callable[[str], str],
|
|
) -> list[str]:
|
|
"""Given a model-agnostic base prompt and test configuration for a model(s)
|
|
to be tested, update the media placeholders and apply the prompt formatting
|
|
to get the test prompt string for this model.
|
|
|
|
Example for phi3v, given the base_prompt: "<image>What is the season?"
|
|
1. Replace img placeholder(s)
|
|
-> "<|image_1|>\nWhat is the season?"
|
|
2. Apply prompt formatter:
|
|
-> <|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n
|
|
"""
|
|
assert isinstance(base_prompts, (list, tuple))
|
|
model_prompts = []
|
|
for base_prompt in base_prompts:
|
|
# Replace the multimodal placeholders in the base prompt with
|
|
# the correct ones for the model that we are testing
|
|
if img_idx_to_prompt:
|
|
base_prompt = replace_test_placeholder(
|
|
base_prompt, img_idx_to_prompt, TEST_IMG_PLACEHOLDER
|
|
)
|
|
|
|
if video_idx_to_prompt:
|
|
base_prompt = replace_test_placeholder(
|
|
base_prompt, video_idx_to_prompt, TEST_VIDEO_PLACEHOLDER
|
|
)
|
|
|
|
if audio_idx_to_prompt:
|
|
base_prompt = replace_test_placeholder(
|
|
base_prompt, audio_idx_to_prompt, TEST_AUDIO_PLACEHOLDER
|
|
)
|
|
|
|
# Apply the prompt formatter to wrap the base prompt with
|
|
# the correct media placeholders to get the model test prompt
|
|
model_prompt = prompt_formatter(base_prompt)
|
|
model_prompts.append(model_prompt)
|
|
return model_prompts
|
|
|
|
|
|
def build_single_image_inputs_from_test_info(
|
|
test_info: VLMTestInfo,
|
|
image_assets: ImageTestAssets,
|
|
size_wrapper: ImageSizeWrapper,
|
|
tmp_path: PosixPath | None = None,
|
|
) -> list[PromptWithMultiModalInput]:
|
|
if test_info.prompt_formatter is None:
|
|
raise ValueError("Prompt formatter must be set to build single image inputs")
|
|
|
|
model_prompts = get_model_prompts(
|
|
test_info.single_image_prompts,
|
|
test_info.img_idx_to_prompt,
|
|
test_info.video_idx_to_prompt,
|
|
test_info.audio_idx_to_prompt,
|
|
test_info.prompt_formatter,
|
|
)
|
|
|
|
# For models that require a local path / URL encoded in the image; export
|
|
# assets and encode into tmp_path for this test. This should be avoided
|
|
# where possible (currently needed for Qwen-VL).
|
|
if test_info.prompt_path_encoder is not None:
|
|
if tmp_path is None:
|
|
raise ValueError("Prompt path encoder requires setting local path")
|
|
model_prompts = [
|
|
test_info.prompt_path_encoder(tmp_path, prompt, [asset])
|
|
for prompt, asset in zip(model_prompts, image_assets)
|
|
]
|
|
|
|
images = [asset.pil_image for asset in image_assets]
|
|
assert len(images) == len(model_prompts)
|
|
return build_single_image_inputs(images, model_prompts, size_wrapper)
|
|
|
|
|
|
def build_single_image_inputs(
|
|
images, model_prompts, size_wrapper: ImageSizeWrapper
|
|
) -> list[PromptWithMultiModalInput]:
|
|
# For every image / prompt pair, get a pair containing two lists of
|
|
# length size_factors, where the first contains duplicates of the model
|
|
# prompt [str], and the second contains copies of the image after being
|
|
# scaled by one of the size factors.
|
|
#
|
|
# NOTE: rescaling preserves the image aspect ratio.
|
|
return [
|
|
PromptWithMultiModalInput(
|
|
prompts=[prompt for _ in size_wrapper.data],
|
|
image_data=[
|
|
apply_image_size_scaling(image, size, size_wrapper.type)
|
|
for size in size_wrapper.data
|
|
],
|
|
)
|
|
for image, prompt in zip(images, model_prompts)
|
|
]
|
|
|
|
|
|
def build_multi_image_inputs_from_test_info(
|
|
test_info: VLMTestInfo,
|
|
image_assets: ImageTestAssets,
|
|
size_wrapper: ImageSizeWrapper,
|
|
tmp_path: PosixPath | None = None,
|
|
) -> list[PromptWithMultiModalInput]:
|
|
if test_info.prompt_formatter is None:
|
|
raise ValueError("Prompt formatter must be set to build multi image inputs")
|
|
|
|
model_prompts = get_model_prompts(
|
|
[test_info.multi_image_prompt],
|
|
test_info.img_idx_to_prompt,
|
|
test_info.video_idx_to_prompt,
|
|
test_info.audio_idx_to_prompt,
|
|
test_info.prompt_formatter,
|
|
)
|
|
|
|
if test_info.prompt_path_encoder is not None:
|
|
if tmp_path is None:
|
|
raise ValueError("Prompt path encoder requires setting local path")
|
|
model_prompts = [
|
|
test_info.prompt_path_encoder(tmp_path, model_prompt, image_assets)
|
|
for model_prompt in model_prompts
|
|
]
|
|
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
# Currently, we only have one multi-image list & one multi-image prompt
|
|
return build_multi_image_inputs(
|
|
image_lists=[images],
|
|
model_prompts=model_prompts,
|
|
size_wrapper=size_wrapper,
|
|
)
|
|
|
|
|
|
def build_multi_image_inputs(
|
|
image_lists, model_prompts, size_wrapper: ImageSizeWrapper
|
|
) -> list[PromptWithMultiModalInput]:
|
|
return [
|
|
PromptWithMultiModalInput(
|
|
prompts=[prompt for _ in size_wrapper.data],
|
|
image_data=[
|
|
[
|
|
apply_image_size_scaling(image, size, size_wrapper.type)
|
|
for image in images
|
|
]
|
|
for size in size_wrapper.data
|
|
],
|
|
)
|
|
for images, prompt in zip(image_lists, model_prompts)
|
|
]
|
|
|
|
|
|
def build_embedding_inputs_from_test_info(
|
|
test_info: VLMTestInfo,
|
|
image_assets: ImageTestAssets,
|
|
size_wrapper: ImageSizeWrapper,
|
|
):
|
|
# These conditions will always be true if invoked through filtering,
|
|
# but we still check them in case this is ever called directly
|
|
if test_info.prompt_formatter is None:
|
|
raise ValueError("Prompt formatter must be set to build image embedding inputs")
|
|
if size_wrapper.type != SizeType.SIZE_FACTOR or not all(
|
|
factor == 1.0 for factor in size_wrapper.data
|
|
):
|
|
raise ValueError("Embedding tests require constant (1.0) size factors")
|
|
if test_info.convert_assets_to_embeddings is None:
|
|
raise ValueError("No conversion func for getting embeddings found")
|
|
|
|
model_prompts = get_model_prompts(
|
|
SINGLE_IMAGE_BASE_PROMPTS,
|
|
test_info.img_idx_to_prompt,
|
|
test_info.video_idx_to_prompt,
|
|
test_info.audio_idx_to_prompt,
|
|
test_info.prompt_formatter,
|
|
)
|
|
|
|
images = [asset.pil_image for asset in image_assets]
|
|
embeds = test_info.convert_assets_to_embeddings(image_assets)
|
|
if test_info.dtype != "auto":
|
|
dtype = getattr(torch, test_info.dtype) # type: ignore
|
|
embeds = [e.to(dtype=dtype) for e in embeds]
|
|
assert len(images) == len(model_prompts)
|
|
|
|
inputs = build_single_image_inputs(images, model_prompts, size_wrapper)
|
|
vllm_embeddings = build_single_image_inputs(embeds, model_prompts, size_wrapper)
|
|
return inputs, vllm_embeddings
|
|
|
|
|
|
def build_video_inputs_from_test_info(
|
|
test_info: VLMTestInfo,
|
|
video_assets: VideoTestAssets,
|
|
size_wrapper: ImageSizeWrapper,
|
|
num_frames: int,
|
|
needs_video_metadata: bool,
|
|
) -> list[PromptWithMultiModalInput]:
|
|
if test_info.prompt_formatter is None:
|
|
raise ValueError("Prompt formatter must be set to build video inputs")
|
|
model_prompts = get_model_prompts(
|
|
[VIDEO_BASE_PROMPT],
|
|
test_info.img_idx_to_prompt,
|
|
test_info.video_idx_to_prompt,
|
|
test_info.audio_idx_to_prompt,
|
|
test_info.prompt_formatter,
|
|
)
|
|
|
|
sampled_vids = [
|
|
sample_frames_with_video_metadata(
|
|
(asset.np_ndarrays, asset.metadata),
|
|
num_frames,
|
|
)
|
|
for asset in video_assets
|
|
]
|
|
|
|
video_scaler = (
|
|
resize_video if size_wrapper.type == SizeType.FIXED_SIZE else rescale_video_size
|
|
)
|
|
|
|
return [
|
|
PromptWithMultiModalInput(
|
|
prompts=[prompt for _ in size_wrapper.data],
|
|
video_data=[
|
|
(
|
|
video_scaler(video, size)
|
|
if not needs_video_metadata
|
|
else (video_scaler(video, size), meta)
|
|
)
|
|
for size in size_wrapper.data
|
|
],
|
|
)
|
|
for (video, meta), prompt in zip(sampled_vids, model_prompts)
|
|
]
|
|
|
|
|
|
def sample_frames_with_video_metadata(
|
|
video_with_meta: tuple[npt.NDArray, dict[str, Any]],
|
|
num_frames: int,
|
|
) -> tuple[npt.NDArray, dict[str, Any]]:
|
|
video, meta = video_with_meta
|
|
video = sample_frames_from_video(video, num_frames)
|
|
|
|
meta["do_sample_frames"] = meta["total_num_frames"] == num_frames
|
|
meta["total_num_frames"] = num_frames
|
|
meta["fps"] = meta["duration"] / num_frames
|
|
meta["frames_indices"] = list(range(num_frames))
|
|
return video, meta
|
|
|
|
|
|
def apply_image_size_scaling(image, size: float | tuple[int, int], size_type: SizeType):
|
|
"""Applies a size scaler to one image; this can be an image size factor,
|
|
which scales the image while maintaining the aspect ratio"""
|
|
# Special case for embeddings; if it's a tensor, it's only valid if we
|
|
# are considering size factors at constant scale, i.e., we just clone
|
|
# the tensor
|
|
if isinstance(image, torch.Tensor):
|
|
assert size_type == SizeType.SIZE_FACTOR and size == 1
|
|
return image
|
|
if size_type == SizeType.SIZE_FACTOR:
|
|
# We have a list of image size factors
|
|
return rescale_image_size(image, size)
|
|
elif size_type == SizeType.FIXED_SIZE:
|
|
# We have a list of fixed sizes
|
|
return image.resize(size)
|
|
raise ValueError("ImageSizeWrapper type must be FIXED_SIZE or SIZE_FACTOR")
|
|
|
|
|
|
def build_audio_inputs_from_test_info(
|
|
test_info: VLMTestInfo,
|
|
audio_assets: AudioTestAssets,
|
|
) -> list[PromptWithMultiModalInput]:
|
|
if test_info.prompt_formatter is None:
|
|
raise ValueError("Prompt formatter must be set to build audio inputs")
|
|
model_prompts = get_model_prompts(
|
|
SINGLE_AUDIO_BASE_PROMPT,
|
|
test_info.img_idx_to_prompt,
|
|
test_info.video_idx_to_prompt,
|
|
test_info.audio_idx_to_prompt,
|
|
test_info.prompt_formatter,
|
|
)
|
|
resampler = AudioResampler(
|
|
target_sr=16000,
|
|
method="librosa",
|
|
)
|
|
audios = [asset.audio_and_sample_rate for asset in audio_assets]
|
|
resampled_audios = [
|
|
(
|
|
resampler.resample(
|
|
audio,
|
|
orig_sr=sr,
|
|
),
|
|
int(resampler.target_sr),
|
|
)
|
|
for audio, sr in audios
|
|
]
|
|
|
|
return [
|
|
PromptWithMultiModalInput(
|
|
prompts=model_prompts,
|
|
audio_data=resampled_audios,
|
|
)
|
|
]
|