mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 19:45:26 +08:00
461 lines
18 KiB
Python
461 lines
18 KiB
Python
import time
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING
|
|
from typing import Counter as CollectionsCounter
|
|
from typing import Dict, List, Optional, Protocol, Union
|
|
|
|
import numpy as np
|
|
import prometheus_client
|
|
|
|
from vllm.executor.ray_utils import ray
|
|
from vllm.logger import init_logger
|
|
|
|
if ray is not None:
|
|
from ray.util import metrics as ray_metrics
|
|
else:
|
|
ray_metrics = None
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.spec_decode.metrics import SpecDecodeWorkerMetrics
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
prometheus_client.disable_created_metrics()
|
|
|
|
# The begin-* and end* here are used by the documentation generator
|
|
# to extract the metrics definitions.
|
|
|
|
|
|
# begin-metrics-definitions
|
|
class Metrics:
|
|
labelname_finish_reason = "finished_reason"
|
|
_base_library = prometheus_client
|
|
|
|
def __init__(self, labelnames: List[str], max_model_len: int):
|
|
# Unregister any existing vLLM collectors
|
|
self._unregister_vllm_metrics()
|
|
|
|
# Config Information
|
|
self.info_cache_config = prometheus_client.Info(
|
|
name='vllm:cache_config',
|
|
documentation='information of cache_config')
|
|
|
|
# System stats
|
|
# Scheduler State
|
|
self.gauge_scheduler_running = self._base_library.Gauge(
|
|
name="vllm:num_requests_running",
|
|
documentation="Number of requests currently running on GPU.",
|
|
labelnames=labelnames)
|
|
self.gauge_scheduler_waiting = self._base_library.Gauge(
|
|
name="vllm:num_requests_waiting",
|
|
documentation="Number of requests waiting to be processed.",
|
|
labelnames=labelnames)
|
|
self.gauge_scheduler_swapped = self._base_library.Gauge(
|
|
name="vllm:num_requests_swapped",
|
|
documentation="Number of requests swapped to CPU.",
|
|
labelnames=labelnames)
|
|
# KV Cache Usage in %
|
|
self.gauge_gpu_cache_usage = self._base_library.Gauge(
|
|
name="vllm:gpu_cache_usage_perc",
|
|
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
|
|
labelnames=labelnames)
|
|
self.gauge_cpu_cache_usage = self._base_library.Gauge(
|
|
name="vllm:cpu_cache_usage_perc",
|
|
documentation="CPU KV-cache usage. 1 means 100 percent usage.",
|
|
labelnames=labelnames)
|
|
|
|
# Iteration stats
|
|
self.counter_num_preemption = self._base_library.Counter(
|
|
name="vllm:num_preemptions_total",
|
|
documentation="Cumulative number of preemption from the engine.",
|
|
labelnames=labelnames)
|
|
self.counter_prompt_tokens = self._base_library.Counter(
|
|
name="vllm:prompt_tokens_total",
|
|
documentation="Number of prefill tokens processed.",
|
|
labelnames=labelnames)
|
|
self.counter_generation_tokens = self._base_library.Counter(
|
|
name="vllm:generation_tokens_total",
|
|
documentation="Number of generation tokens processed.",
|
|
labelnames=labelnames)
|
|
self.histogram_time_to_first_token = self._base_library.Histogram(
|
|
name="vllm:time_to_first_token_seconds",
|
|
documentation="Histogram of time to first token in seconds.",
|
|
labelnames=labelnames,
|
|
buckets=[
|
|
0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
|
|
0.75, 1.0, 2.5, 5.0, 7.5, 10.0
|
|
])
|
|
self.histogram_time_per_output_token = self._base_library.Histogram(
|
|
name="vllm:time_per_output_token_seconds",
|
|
documentation="Histogram of time per output token in seconds.",
|
|
labelnames=labelnames,
|
|
buckets=[
|
|
0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75,
|
|
1.0, 2.5
|
|
])
|
|
|
|
# Request stats
|
|
# Latency
|
|
self.histogram_e2e_time_request = self._base_library.Histogram(
|
|
name="vllm:e2e_request_latency_seconds",
|
|
documentation="Histogram of end to end request latency in seconds.",
|
|
labelnames=labelnames,
|
|
buckets=[1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0])
|
|
# Metadata
|
|
self.histogram_num_prompt_tokens_request = self._base_library.Histogram(
|
|
name="vllm:request_prompt_tokens",
|
|
documentation="Number of prefill tokens processed.",
|
|
labelnames=labelnames,
|
|
buckets=build_1_2_5_buckets(max_model_len),
|
|
)
|
|
self.histogram_num_generation_tokens_request = \
|
|
self._base_library.Histogram(
|
|
name="vllm:request_generation_tokens",
|
|
documentation="Number of generation tokens processed.",
|
|
labelnames=labelnames,
|
|
buckets=build_1_2_5_buckets(max_model_len),
|
|
)
|
|
self.histogram_best_of_request = self._base_library.Histogram(
|
|
name="vllm:request_params_best_of",
|
|
documentation="Histogram of the best_of request parameter.",
|
|
labelnames=labelnames,
|
|
buckets=[1, 2, 5, 10, 20],
|
|
)
|
|
self.histogram_n_request = self._base_library.Histogram(
|
|
name="vllm:request_params_n",
|
|
documentation="Histogram of the n request parameter.",
|
|
labelnames=labelnames,
|
|
buckets=[1, 2, 5, 10, 20],
|
|
)
|
|
self.counter_request_success = self._base_library.Counter(
|
|
name="vllm:request_success_total",
|
|
documentation="Count of successfully processed requests.",
|
|
labelnames=labelnames + [Metrics.labelname_finish_reason])
|
|
|
|
# Deprecated in favor of vllm:prompt_tokens_total
|
|
self.gauge_avg_prompt_throughput = self._base_library.Gauge(
|
|
name="vllm:avg_prompt_throughput_toks_per_s",
|
|
documentation="Average prefill throughput in tokens/s.",
|
|
labelnames=labelnames,
|
|
)
|
|
# Deprecated in favor of vllm:generation_tokens_total
|
|
self.gauge_avg_generation_throughput = self._base_library.Gauge(
|
|
name="vllm:avg_generation_throughput_toks_per_s",
|
|
documentation="Average generation throughput in tokens/s.",
|
|
labelnames=labelnames,
|
|
)
|
|
|
|
def _unregister_vllm_metrics(self) -> None:
|
|
for collector in list(self._base_library.REGISTRY._collector_to_names):
|
|
if hasattr(collector, "_name") and "vllm" in collector._name:
|
|
self._base_library.REGISTRY.unregister(collector)
|
|
|
|
|
|
class RayMetrics(Metrics):
|
|
"""
|
|
RayMetrics is used by RayPrometheusStatLogger to log to Ray metrics.
|
|
Provides the same metrics as Metrics but uses Ray's util.metrics library.
|
|
"""
|
|
_base_library = ray_metrics
|
|
|
|
def __init__(self, labelnames: List[str], max_model_len: int):
|
|
if ray_metrics is None:
|
|
raise ImportError("RayMetrics requires Ray to be installed.")
|
|
super().__init__(labelnames, max_model_len)
|
|
|
|
def _unregister_vllm_metrics(self) -> None:
|
|
# No-op on purpose
|
|
pass
|
|
|
|
|
|
# end-metrics-definitions
|
|
|
|
|
|
def build_1_2_5_buckets(max_value: int) -> List[int]:
|
|
"""
|
|
Builds a list of buckets with increasing powers of 10 multiplied by
|
|
mantissa values (1, 2, 5) until the value exceeds the specified maximum.
|
|
|
|
Example:
|
|
>>> build_1_2_5_buckets(100)
|
|
[1, 2, 5, 10, 20, 50, 100]
|
|
"""
|
|
mantissa_lst = [1, 2, 5]
|
|
exponent = 0
|
|
buckets: List[int] = []
|
|
while True:
|
|
for m in mantissa_lst:
|
|
value = m * 10**exponent
|
|
if value <= max_value:
|
|
buckets.append(value)
|
|
else:
|
|
return buckets
|
|
exponent += 1
|
|
|
|
|
|
@dataclass
|
|
class Stats:
|
|
"""Created by LLMEngine for use by StatLogger."""
|
|
now: float
|
|
|
|
# System stats (should have _sys suffix)
|
|
# Scheduler State
|
|
num_running_sys: int
|
|
num_waiting_sys: int
|
|
num_swapped_sys: int
|
|
# KV Cache Usage in %
|
|
gpu_cache_usage_sys: float
|
|
cpu_cache_usage_sys: float
|
|
|
|
# Iteration stats (should have _iter suffix)
|
|
num_prompt_tokens_iter: int
|
|
num_generation_tokens_iter: int
|
|
time_to_first_tokens_iter: List[float]
|
|
time_per_output_tokens_iter: List[float]
|
|
num_preemption_iter: int
|
|
|
|
# Request stats (should have _requests suffix)
|
|
# Latency
|
|
time_e2e_requests: List[float]
|
|
# Metadata
|
|
num_prompt_tokens_requests: List[int]
|
|
num_generation_tokens_requests: List[int]
|
|
best_of_requests: List[int]
|
|
n_requests: List[int]
|
|
finished_reason_requests: List[str]
|
|
|
|
spec_decode_metrics: Optional["SpecDecodeWorkerMetrics"] = None
|
|
|
|
|
|
class SupportsMetricsInfo(Protocol):
|
|
|
|
def metrics_info(self) -> Dict[str, str]:
|
|
...
|
|
|
|
|
|
def local_interval_elapsed(now: float, last_log: float,
|
|
local_interval: float) -> bool:
|
|
elapsed_time = now - last_log
|
|
return elapsed_time > local_interval
|
|
|
|
|
|
def get_throughput(tracked_stats: List[int], now: float,
|
|
last_log: float) -> float:
|
|
return float(np.sum(tracked_stats) / (now - last_log))
|
|
|
|
|
|
class StatLoggerBase(ABC):
|
|
"""Base class for StatLogger."""
|
|
|
|
def __init__(self, local_interval: float) -> None:
|
|
# Tracked stats over current local logging interval.
|
|
self.num_prompt_tokens: List[int] = []
|
|
self.num_generation_tokens: List[int] = []
|
|
self.last_local_log = time.time()
|
|
self.local_interval = local_interval
|
|
|
|
@abstractmethod
|
|
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def log(self, stats: Stats) -> None:
|
|
raise NotImplementedError
|
|
|
|
|
|
class LoggingStatLogger(StatLoggerBase):
|
|
"""LoggingStatLogger is used in LLMEngine to log to Stdout."""
|
|
|
|
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
|
raise NotImplementedError
|
|
|
|
def log(self, stats: Stats) -> None:
|
|
"""Called by LLMEngine.
|
|
Logs to Stdout every self.local_interval seconds."""
|
|
|
|
# Save tracked stats for token counters.
|
|
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
|
|
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
|
|
|
|
# Log locally every local_interval seconds.
|
|
if local_interval_elapsed(stats.now, self.last_local_log,
|
|
self.local_interval):
|
|
# Compute summary metrics for tracked stats (and log them
|
|
# to promethus if applicable).
|
|
prompt_throughput = get_throughput(self.num_prompt_tokens,
|
|
now=stats.now,
|
|
last_log=self.last_local_log)
|
|
generation_throughput = get_throughput(
|
|
self.num_generation_tokens,
|
|
now=stats.now,
|
|
last_log=self.last_local_log)
|
|
|
|
# Log to stdout.
|
|
logger.info(
|
|
"Avg prompt throughput: %.1f tokens/s, "
|
|
"Avg generation throughput: %.1f tokens/s, "
|
|
"Running: %d reqs, Swapped: %d reqs, "
|
|
"Pending: %d reqs, GPU KV cache usage: %.1f%%, "
|
|
"CPU KV cache usage: %.1f%%.",
|
|
prompt_throughput,
|
|
generation_throughput,
|
|
stats.num_running_sys,
|
|
stats.num_swapped_sys,
|
|
stats.num_waiting_sys,
|
|
stats.gpu_cache_usage_sys * 100,
|
|
stats.cpu_cache_usage_sys * 100,
|
|
)
|
|
|
|
# Reset tracked stats for next interval.
|
|
self.num_prompt_tokens = []
|
|
self.num_generation_tokens = []
|
|
self.last_local_log = stats.now
|
|
|
|
if stats.spec_decode_metrics is not None:
|
|
logger.info(
|
|
self._format_spec_decode_metrics_str(
|
|
stats.spec_decode_metrics))
|
|
|
|
def _format_spec_decode_metrics_str(
|
|
self, metrics: "SpecDecodeWorkerMetrics") -> str:
|
|
|
|
return ("Speculative metrics: "
|
|
f"Draft acceptance rate: {metrics.draft_acceptance_rate:.3f}, "
|
|
f"System efficiency: {metrics.system_efficiency:.3f}, "
|
|
f"Number of speculative tokens: {metrics.num_spec_tokens}, "
|
|
f"Number of accepted tokens: {metrics.accepted_tokens}, "
|
|
f"Number of draft tokens: {metrics.draft_tokens}, "
|
|
f"Number of emitted tokens: {metrics.emitted_tokens}.")
|
|
|
|
|
|
class PrometheusStatLogger(StatLoggerBase):
|
|
"""PrometheusStatLogger is used LLMEngine to log to Promethus."""
|
|
_metrics_cls = Metrics
|
|
|
|
def __init__(self, local_interval: float, labels: Dict[str, str],
|
|
max_model_len: int) -> None:
|
|
super().__init__(local_interval)
|
|
# Prometheus metrics
|
|
self.labels = labels
|
|
self.metrics = self._metrics_cls(labelnames=list(labels.keys()),
|
|
max_model_len=max_model_len)
|
|
|
|
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
|
if type == "cache_config":
|
|
self.metrics.info_cache_config.info(obj.metrics_info())
|
|
|
|
def _log_gauge(self, gauge, data: Union[int, float]) -> None:
|
|
# Convenience function for logging to gauge.
|
|
gauge.labels(**self.labels).set(data)
|
|
|
|
def _log_counter(self, counter, data: Union[int, float]) -> None:
|
|
# Convenience function for logging to counter.
|
|
counter.labels(**self.labels).inc(data)
|
|
|
|
def _log_counter_labels(self, counter, data: CollectionsCounter,
|
|
label_key: str) -> None:
|
|
# Convenience function for collection counter of labels.
|
|
for label, count in data.items():
|
|
counter.labels(**{**self.labels, label_key: label}).inc(count)
|
|
|
|
def _log_histogram(self, histogram, data: Union[List[int],
|
|
List[float]]) -> None:
|
|
# Convenience function for logging list to histogram.
|
|
for datum in data:
|
|
histogram.labels(**self.labels).observe(datum)
|
|
|
|
def _log_prometheus(self, stats: Stats) -> None:
|
|
# System state data
|
|
self._log_gauge(self.metrics.gauge_scheduler_running,
|
|
stats.num_running_sys)
|
|
self._log_gauge(self.metrics.gauge_scheduler_swapped,
|
|
stats.num_swapped_sys)
|
|
self._log_gauge(self.metrics.gauge_scheduler_waiting,
|
|
stats.num_waiting_sys)
|
|
self._log_gauge(self.metrics.gauge_gpu_cache_usage,
|
|
stats.gpu_cache_usage_sys)
|
|
self._log_gauge(self.metrics.gauge_cpu_cache_usage,
|
|
stats.cpu_cache_usage_sys)
|
|
|
|
# Iteration level data
|
|
self._log_counter(self.metrics.counter_num_preemption,
|
|
stats.num_preemption_iter)
|
|
self._log_counter(self.metrics.counter_prompt_tokens,
|
|
stats.num_prompt_tokens_iter)
|
|
self._log_counter(self.metrics.counter_generation_tokens,
|
|
stats.num_generation_tokens_iter)
|
|
self._log_histogram(self.metrics.histogram_time_to_first_token,
|
|
stats.time_to_first_tokens_iter)
|
|
self._log_histogram(self.metrics.histogram_time_per_output_token,
|
|
stats.time_per_output_tokens_iter)
|
|
|
|
# Request level data
|
|
# Latency
|
|
self._log_histogram(self.metrics.histogram_e2e_time_request,
|
|
stats.time_e2e_requests)
|
|
# Metadata
|
|
finished_reason_counter = CollectionsCounter(
|
|
stats.finished_reason_requests)
|
|
self._log_counter_labels(self.metrics.counter_request_success,
|
|
finished_reason_counter,
|
|
Metrics.labelname_finish_reason)
|
|
self._log_histogram(self.metrics.histogram_num_prompt_tokens_request,
|
|
stats.num_prompt_tokens_requests)
|
|
self._log_histogram(
|
|
self.metrics.histogram_num_generation_tokens_request,
|
|
stats.num_generation_tokens_requests)
|
|
self._log_histogram(self.metrics.histogram_n_request, stats.n_requests)
|
|
self._log_histogram(self.metrics.histogram_best_of_request,
|
|
stats.best_of_requests)
|
|
|
|
def _log_prometheus_interval(self, prompt_throughput: float,
|
|
generation_throughput: float) -> None:
|
|
# Logs metrics to prometheus that are computed every logging_interval.
|
|
# Support legacy gauge metrics that make throughput calculations on
|
|
# the vLLM side. Moving forward, we should use counters like
|
|
# counter_prompt_tokens, counter_generation_tokens
|
|
# Which log raw data and calculate summaries using rate() on the
|
|
# grafana/prometheus side. See
|
|
# https://github.com/vllm-project/vllm/pull/2316#discussion_r1464204666
|
|
self.metrics.gauge_avg_prompt_throughput.labels(
|
|
**self.labels).set(prompt_throughput)
|
|
self.metrics.gauge_avg_generation_throughput.labels(
|
|
**self.labels).set(generation_throughput)
|
|
|
|
def log(self, stats: Stats):
|
|
"""Logs to prometheus and tracked stats every iteration."""
|
|
# Log to prometheus.
|
|
self._log_prometheus(stats)
|
|
|
|
# Save tracked stats for token counters.
|
|
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
|
|
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
|
|
|
|
# Log locally every local_interval seconds.
|
|
if local_interval_elapsed(stats.now, self.last_local_log,
|
|
self.local_interval):
|
|
# Compute summary metrics for tracked stats (and log them
|
|
# to promethus if applicable).
|
|
prompt_throughput = get_throughput(self.num_prompt_tokens,
|
|
now=stats.now,
|
|
last_log=self.last_local_log)
|
|
generation_throughput = get_throughput(
|
|
self.num_generation_tokens,
|
|
now=stats.now,
|
|
last_log=self.last_local_log)
|
|
|
|
self._log_prometheus_interval(
|
|
prompt_throughput=prompt_throughput,
|
|
generation_throughput=generation_throughput)
|
|
|
|
# Reset tracked stats for next interval.
|
|
self.num_prompt_tokens = []
|
|
self.num_generation_tokens = []
|
|
self.last_local_log = stats.now
|
|
|
|
|
|
class RayPrometheusStatLogger(PrometheusStatLogger):
|
|
"""RayPrometheusStatLogger uses Ray metrics instead."""
|
|
_metrics_cls = RayMetrics
|