mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 02:15:01 +08:00
Signed-off-by: Daniel Afrimi <danielafrimi8@gmail.com> Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com> Signed-off-by: Chen Zhang <zhangch99@outlook.com> Co-authored-by: Daniel Afrimi <danielafrimi8@gmail.com> Co-authored-by: Burkhard Ringlein <ngl@zurich.ibm.com> Co-authored-by: Chen Zhang <zhangch99@outlook.com>
84 lines
3.3 KiB
Python
84 lines
3.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from dataclasses import dataclass
|
|
|
|
import torch
|
|
|
|
from vllm.attention.backends.utils import PAD_SLOT_ID
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.models.constant_size_cache import ConstantSizeCache
|
|
|
|
|
|
@dataclass
|
|
class MambaCacheParams:
|
|
conv_state: torch.Tensor = torch.Tensor()
|
|
ssm_state: torch.Tensor = torch.Tensor()
|
|
state_indices_tensor: torch.Tensor = torch.Tensor()
|
|
|
|
def at_layer_idx(self, layer_idx):
|
|
return MambaCacheParams(self.conv_state[layer_idx],
|
|
self.ssm_state[layer_idx],
|
|
self.state_indices_tensor)
|
|
|
|
|
|
class MambaCacheManager(ConstantSizeCache):
|
|
|
|
def __init__(self, vllm_config: VllmConfig, num_mamba_layers: int,
|
|
conv_state_shape: tuple[int, int],
|
|
temporal_state_shape: tuple[int, int],
|
|
conv_state_dtype: torch.dtype,
|
|
temporal_state_dtype: torch.dtype):
|
|
|
|
self.conv_state_dtype = conv_state_dtype
|
|
self.temporal_state_dtype = temporal_state_dtype
|
|
|
|
# Determine max batch size to set size of MambaCache
|
|
max_batch_size = vllm_config.scheduler_config.max_num_seqs
|
|
if not vllm_config.model_config.enforce_eager:
|
|
max_batch_size = vllm_config.pad_for_cudagraph(max_batch_size)
|
|
|
|
# Initialize parent class
|
|
super().__init__(max_batch_size)
|
|
|
|
# assume conv_state = (dim, state_len)
|
|
assert conv_state_shape[0] > conv_state_shape[1]
|
|
conv_state = torch.empty(size=(num_mamba_layers, max_batch_size) +
|
|
(conv_state_shape[1], conv_state_shape[0]),
|
|
dtype=self.conv_state_dtype,
|
|
device="cuda").transpose(-1, -2)
|
|
temporal_state = torch.empty(size=(num_mamba_layers, max_batch_size) +
|
|
temporal_state_shape,
|
|
dtype=self.temporal_state_dtype,
|
|
device="cuda")
|
|
|
|
self._mamba_cache = (conv_state, temporal_state)
|
|
|
|
@property
|
|
def cache(self):
|
|
return self._mamba_cache
|
|
|
|
def _copy_cache(self, from_index: int, to_index: int):
|
|
for cache_t in self.cache:
|
|
cache_t[:, to_index].copy_(cache_t[:, from_index],
|
|
non_blocking=True)
|
|
|
|
def current_run_tensors(self, **kwargs) -> MambaCacheParams:
|
|
"""
|
|
Return the tensors for the current run's conv and ssm state.
|
|
"""
|
|
cache_tensors, state_indices_tensor = super().current_run_tensors(
|
|
**kwargs)
|
|
return MambaCacheParams(cache_tensors[0], cache_tensors[1],
|
|
state_indices_tensor)
|
|
|
|
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
|
|
"""
|
|
Provide the CUDA graph capture runs with a buffer in adjusted size.
|
|
The buffer is used to maintain the Mamba Cache during the CUDA graph
|
|
replay runs.
|
|
"""
|
|
return self._mamba_cache, torch.as_tensor([PAD_SLOT_ID] * batch_size,
|
|
dtype=torch.int32,
|
|
device="cuda")
|