vllm/vllm/model_executor/model_loader/runai_streamer_loader.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

111 lines
4.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# ruff: noqa: SIM117
import os
from collections.abc import Generator
import torch
from torch import nn
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME
from vllm.config import ModelConfig
from vllm.config.load import LoadConfig
from vllm.model_executor.model_loader.base_loader import BaseModelLoader
from vllm.model_executor.model_loader.weight_utils import (
download_safetensors_index_file_from_hf,
download_weights_from_hf,
runai_safetensors_weights_iterator,
)
from vllm.transformers_utils.runai_utils import is_runai_obj_uri, list_safetensors
class RunaiModelStreamerLoader(BaseModelLoader):
"""
Model loader that can load safetensors
files from local FS or S3 bucket.
"""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
if load_config.model_loader_extra_config:
extra_config = load_config.model_loader_extra_config
if "concurrency" in extra_config and isinstance(
extra_config.get("concurrency"), int
):
os.environ["RUNAI_STREAMER_CONCURRENCY"] = str(
extra_config.get("concurrency")
)
if "memory_limit" in extra_config and isinstance(
extra_config.get("memory_limit"), int
):
os.environ["RUNAI_STREAMER_MEMORY_LIMIT"] = str(
extra_config.get("memory_limit")
)
runai_streamer_s3_endpoint = os.getenv("RUNAI_STREAMER_S3_ENDPOINT")
aws_endpoint_url = os.getenv("AWS_ENDPOINT_URL")
if runai_streamer_s3_endpoint is None and aws_endpoint_url is not None:
os.environ["RUNAI_STREAMER_S3_ENDPOINT"] = aws_endpoint_url
def _prepare_weights(
self, model_name_or_path: str, revision: str | None
) -> list[str]:
"""Prepare weights for the model.
If the model is not local, it will be downloaded."""
is_object_storage_path = is_runai_obj_uri(model_name_or_path)
is_local = os.path.isdir(model_name_or_path)
safetensors_pattern = "*.safetensors"
index_file = SAFE_WEIGHTS_INDEX_NAME
hf_folder = (
model_name_or_path
if (is_local or is_object_storage_path)
else download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
[safetensors_pattern],
revision,
ignore_patterns=self.load_config.ignore_patterns,
)
)
hf_weights_files = list_safetensors(path=hf_folder)
if not is_local and not is_object_storage_path:
download_safetensors_index_file_from_hf(
model_name_or_path, index_file, self.load_config.download_dir, revision
)
if not hf_weights_files:
raise RuntimeError(
f"Cannot find any safetensors model weights with `{model_name_or_path}`"
)
return hf_weights_files
def _get_weights_iterator(
self, model_or_path: str, revision: str
) -> Generator[tuple[str, torch.Tensor], None, None]:
"""Get an iterator for the model weights based on the load format."""
hf_weights_files = self._prepare_weights(model_or_path, revision)
return runai_safetensors_weights_iterator(
hf_weights_files,
self.load_config.use_tqdm_on_load,
)
def download_model(self, model_config: ModelConfig) -> None:
"""Download model if necessary"""
self._prepare_weights(model_config.model, model_config.revision)
def load_weights(self, model: nn.Module, model_config: ModelConfig) -> None:
"""Load weights into a model."""
model_weights = model_config.model
if hasattr(model_config, "model_weights"):
model_weights = model_config.model_weights
model.load_weights(
self._get_weights_iterator(model_weights, model_config.revision)
)