vllm/tests/entrypoints/test_context.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

531 lines
18 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from unittest.mock import MagicMock, patch
import pytest
from openai_harmony import Author, Message, Role, StreamState, TextContent
from vllm.entrypoints.context import HarmonyContext, StreamingHarmonyContext
from vllm.outputs import CompletionOutput, RequestOutput
# Helper function for Python < 3.10 compatibility
async def async_next(async_iterator):
"""Compatibility function equivalent to Python 3.10's anext()."""
return await async_iterator.__anext__()
def create_mock_request_output(
prompt_token_ids=None,
output_token_ids=None,
num_cached_tokens=0,
finished=True,
):
"""Helper function to create a mock RequestOutput object for testing."""
outputs = []
token_ids = output_token_ids if output_token_ids is not None else []
outputs = [
CompletionOutput(
index=0,
text="Test output",
token_ids=token_ids,
cumulative_logprob=0.0,
logprobs=None,
finish_reason=None,
stop_reason=None,
)
]
return RequestOutput(
request_id="test-id",
prompt="Test prompt",
prompt_token_ids=prompt_token_ids,
prompt_logprobs=None,
outputs=outputs,
finished=finished,
num_cached_tokens=num_cached_tokens,
)
async def generate_mock_outputs(
num_turns, prompt_token_counts, output_token_counts, cached_token_counts=None
):
"""Generate a sequence of mock RequestOutput objects to simulate multiple
turns."""
if cached_token_counts is None:
cached_token_counts = [0] * num_turns
for i in range(num_turns):
# Create mock prompt token IDs and output token IDs
prompt_token_ids = list(range(1, prompt_token_counts[i] + 1))
output_token_ids = list(range(1, output_token_counts[i] + 1))
# Create and yield the RequestOutput
yield create_mock_request_output(
prompt_token_ids=prompt_token_ids,
output_token_ids=output_token_ids,
num_cached_tokens=cached_token_counts[i],
)
@pytest.fixture
def mock_parser():
"""Set up a mock parser for tests."""
with patch(
"vllm.entrypoints.context.get_streamable_parser_for_assistant"
) as mock_parser_factory:
# Create a mock parser object
parser = MagicMock()
parser.messages = []
parser.current_channel = None
parser.state = StreamState.EXPECT_START
mock_parser_factory.return_value = parser
yield parser
def test_single_turn_token_counting():
"""Test token counting behavior for a single turn."""
# Create a context
context = HarmonyContext(messages=[], available_tools=[])
# Create a mock RequestOutput with specific token counts
mock_output = create_mock_request_output(
prompt_token_ids=[1, 2, 3, 4, 5], # 5 prompt tokens
output_token_ids=[6, 7, 8], # 3 output tokens
num_cached_tokens=2, # 2 cached tokens
)
# Append the output to the context
context.append_output(mock_output)
# Verify the token counts
assert context.num_prompt_tokens == 5
assert context.num_output_tokens == 3
assert context.num_cached_tokens == 2
assert context.num_tool_output_tokens == 0 # No tool tokens in first turn
# Verify internal state tracking
assert not context.is_first_turn
assert context.previous_turn.input_tokens == 5
assert context.previous_turn.output_tokens == 3
@pytest.mark.asyncio
async def test_multi_turn_token_counting():
"""Test token counting behavior across multiple turns with tool output."""
# Create a context
context = HarmonyContext(messages=[], available_tools=["browser"])
# Simulate a conversation with 3 turns
# Turn 1: prefill 5, decode 3, tool 7
# Turn 2: prefill 15, cached 5, decode 4, tool 1
# Turn 3: prefill 20, cached 15, decode 5
prompt_token_counts = [5, 15, 20]
output_token_counts = [3, 4, 5]
cached_token_counts = [0, 5, 15]
mock_generator = generate_mock_outputs(
3, prompt_token_counts, output_token_counts, cached_token_counts
)
# First turn - initial prompt and response
mock_output1 = await async_next(mock_generator)
context.append_output(mock_output1)
# At this point, we should have 5 prompt tokens and 3 output tokens
assert context.num_prompt_tokens == 5
assert context.num_output_tokens == 3
assert context.num_tool_output_tokens == 0
# Second turn - after tool output
mock_output2 = await async_next(mock_generator)
context.append_output(mock_output2)
# Current prompt tokens (15) - last_turn_input_tokens (5) -
# last_turn_output_tokens (3) = 7
expected_tool_output = 7
assert context.num_prompt_tokens == 5 + 15
assert context.num_output_tokens == 3 + 4
assert context.num_tool_output_tokens == expected_tool_output
assert context.num_cached_tokens == 5
# Third turn - final response
mock_output3 = await async_next(mock_generator)
context.append_output(mock_output3)
# Additional tool output tokens from third turn:
# Current prompt (20) - last_turn_input_tokens (15) -
# last_turn_output_tokens (4) = 1
expected_tool_output = 7 + 1
assert context.num_prompt_tokens == 5 + 15 + 20
assert context.num_output_tokens == 3 + 4 + 5
assert context.num_tool_output_tokens == expected_tool_output
assert context.num_cached_tokens == 5 + 15
def test_empty_output_tokens():
"""Test behavior when RequestOutput has empty output tokens."""
context = HarmonyContext(messages=[], available_tools=[])
# Create a RequestOutput with empty output tokens
mock_output = create_mock_request_output(
prompt_token_ids=[1, 2, 3], # 3 prompt tokens
output_token_ids=[], # Empty output tokens list
num_cached_tokens=1,
)
context.append_output(mock_output)
# Should handle empty outputs gracefully
assert context.num_prompt_tokens == 3
assert context.num_output_tokens == 0 # No output tokens
assert context.num_cached_tokens == 1
assert context.num_tool_output_tokens == 0
def test_missing_prompt_token_ids():
"""Test behavior when RequestOutput has None prompt_token_ids."""
context = HarmonyContext(messages=[], available_tools=[])
mock_output = create_mock_request_output(
prompt_token_ids=None, # No prompt token IDs
output_token_ids=[1, 2], # 2 output tokens
num_cached_tokens=0,
)
# Logger.error will be called, but we don't need to check for warnings
# here Just ensure it doesn't raise an exception
context.append_output(mock_output)
# Should handle missing prompt tokens gracefully
assert context.num_prompt_tokens == 0
assert context.num_output_tokens == 2
assert context.num_cached_tokens == 0
assert context.num_tool_output_tokens == 0
def test_reasoning_tokens_counting(mock_parser):
"""Test that reasoning tokens are counted correctly."""
context = HarmonyContext(messages=[], available_tools=[])
# Mock parser to simulate reasoning channel
mock_parser.current_channel = "analysis" # Reasoning channel
mock_output = create_mock_request_output(
prompt_token_ids=[1, 2, 3],
output_token_ids=[4, 5, 6, 7], # 4 tokens, all in reasoning
num_cached_tokens=0,
)
context.append_output(mock_output)
# All output tokens should be counted as reasoning
assert context.num_reasoning_tokens == 4
assert context.num_output_tokens == 4
def test_zero_tokens_edge_case():
"""Test behavior with all zero token counts."""
context = HarmonyContext(messages=[], available_tools=[])
# Create a request with empty lists (not None) for both prompt and
# output tokens
mock_output = create_mock_request_output(
prompt_token_ids=[], # Empty prompt tokens
output_token_ids=[], # Empty output tokens
num_cached_tokens=0,
)
context.append_output(mock_output)
# All counts should be zero
assert context.num_prompt_tokens == 0
assert context.num_output_tokens == 0
assert context.num_cached_tokens == 0
assert context.num_tool_output_tokens == 0
assert context.num_reasoning_tokens == 0
@pytest.mark.asyncio
async def test_single_turn_no_tool_output():
"""Test that first turn never generates tool output tokens."""
context = HarmonyContext(
messages=[],
available_tools=["browser"], # Tools available
)
# Even with large prompt in first turn, no tool tokens should be counted
mock_output = create_mock_request_output(
prompt_token_ids=list(range(100)), # 100 tokens
output_token_ids=[1, 2, 3],
num_cached_tokens=0,
)
context.append_output(mock_output)
# First turn should never have tool output tokens
assert context.num_tool_output_tokens == 0
assert context.is_first_turn is False # Should be updated after first turn
@pytest.mark.asyncio
async def test_negative_tool_tokens_edge_case():
"""Test edge case where calculation could result in negative tool
tokens. We should log an error and clamp the value to 0."""
# Use patch to check if logger.error was called
with patch("vllm.entrypoints.context.logger.error") as mock_log:
context = HarmonyContext(messages=[], available_tools=["browser"])
# First turn
mock_output1 = create_mock_request_output(
prompt_token_ids=list(range(10)), # 10 tokens
output_token_ids=[1, 2, 3, 4, 5], # 5 tokens
)
context.append_output(mock_output1)
# Second turn with fewer new tokens than previous output
# This could happen in edge cases with aggressive caching
mock_output2 = create_mock_request_output(
prompt_token_ids=list(range(12)), # 12 tokens (only 2 new)
output_token_ids=[6, 7], # 2 tokens
)
context.append_output(mock_output2)
# Calculated negative tool tokens (12 - 10 - 5 = -3) should be clamped
# to 0 and an error should be logged
assert context.num_tool_output_tokens == 0
assert context.num_prompt_tokens == 10 + 12
assert context.num_output_tokens == 5 + 2
# Verify the error was logged properly
mock_log.assert_called_once()
# Extract the actual log message and arguments from the call
args, _ = mock_log.call_args
log_message = args[0]
# Check for key parts of the message
assert "Negative tool output tokens calculated" in log_message
assert "-3" in str(args) # Check that -3 is in the arguments
@pytest.mark.asyncio
async def test_streaming_multi_turn_token_counting(mock_parser):
"""Test token counting for streaming multi-turn conversations.
This test focuses on how StreamingHarmonyContext counts tokens in a
multi-turn conversation with streaming (token-by-token) outputs and
message boundaries.
"""
# Create a streaming context
context = StreamingHarmonyContext(messages=[], available_tools=["browser"])
# Simulate three turns of conversation:
# Turn 1: stream tokens one by one, then finish the message
# Turn 2: new prompt, stream more tokens with a reasoning segment
# Turn 3: new prompt with tool output and cached tokens
# First turn: 3 tokens streamed one by one
# First token of first turn
context.append_output(
create_mock_request_output(
prompt_token_ids=[1, 2, 3], # 3 prompt tokens
output_token_ids=[101], # Single token
num_cached_tokens=0,
finished=False, # Not end of message yet
)
)
# Second token of first turn
context.append_output(
create_mock_request_output(
output_token_ids=[102],
finished=False,
)
)
# Last token of first turn (finished=True signals end of message)
context.append_output(
create_mock_request_output(
output_token_ids=[103],
finished=True, # End of message
)
)
# Check token counts after first turn
assert context.num_prompt_tokens == 3 # Initial prompt tokens
assert context.num_output_tokens == 3 # Three output tokens
assert context.num_cached_tokens == 0
assert context.num_tool_output_tokens == 0 # No tool output in first turn
assert context.first_tok_of_message is True # Ready for next message
# Second turn: reasoning tokens in analysis channel
mock_parser.current_channel = "analysis" # Set to reasoning channel
# First token of second turn
context.append_output(
create_mock_request_output(
prompt_token_ids=[
1,
2,
3,
101,
102,
103,
4,
5,
], # 8 tokens (includes previous)
output_token_ids=[201],
num_cached_tokens=3, # Some tokens cached
finished=False,
)
)
# More tokens in reasoning channel
context.append_output(
create_mock_request_output(
output_token_ids=[202],
finished=False,
)
)
context.append_output(
create_mock_request_output(
output_token_ids=[203],
finished=True, # End of reasoning message
)
)
# Check counts after second turn (reasoning message)
assert context.num_prompt_tokens == 3 + 8 # Initial + second prompt
assert context.num_output_tokens == 3 + 3 # First turn + second turn
assert context.num_reasoning_tokens == 3 # All tokens in analysis channel
assert context.num_cached_tokens == 3 # Cached tokens from second turn
# Formula: this turn prompt tokens - last turn prompt - last turn output
expected_tool_tokens = 8 - 3 - 3 # = 2
assert context.num_tool_output_tokens == expected_tool_tokens
# Third turn: regular output channel
mock_parser.current_channel = "final" # Switch back to regular channel
# Third turn (with more cached tokens)
context.append_output(
create_mock_request_output(
prompt_token_ids=[
1,
2,
3,
101,
102,
103,
4,
5,
201,
202,
203,
6,
7,
], # 13 tokens
output_token_ids=[301],
num_cached_tokens=8, # More cached tokens
finished=False,
)
)
context.append_output(
create_mock_request_output(
output_token_ids=[302],
finished=True,
)
)
# Final token counts check
assert context.num_prompt_tokens == 3 + 8 + 13 # All prompts
assert context.num_output_tokens == 3 + 3 + 2 # All outputs
assert context.num_reasoning_tokens == 3 # Unchanged from second turn
assert context.num_cached_tokens == 3 + 8 # Accumulated cached tokens
# Additional tool tokens from third turn
# Formula: this turn prompt - last turn prompt - last turn output
additional_tool_tokens = 13 - 8 - 3 # = 2
assert (
context.num_tool_output_tokens == expected_tool_tokens + additional_tool_tokens
)
@pytest.mark.asyncio
async def test_streaming_message_synchronization(mock_parser):
"""Test message synchronization logic from lines 413-417 in context.py.
This test verifies that when parser.messages contains more messages than
the context's _messages (minus initial messages), the context properly
extends its message list with the new parser messages.
"""
# Create a streaming context with some initial messages
initial_messages = [
Message(
author=Author(role=Role.USER, name="user"),
content=[TextContent(text="Hello")],
recipient=Role.ASSISTANT,
)
]
context = StreamingHarmonyContext(messages=initial_messages, available_tools=[])
# Verify initial state
assert len(context._messages) == 1
assert context.num_init_messages == 1
# Mock parser to have more messages than context
# Simulate parser having processed 3 new messages
mock_parser.messages = [
Message(
author=Author(role=Role.ASSISTANT, name="assistant"),
content=[TextContent(text="Response 1")],
recipient=Role.USER,
),
]
# This should trigger the message synchronization logic
context.append_output(
create_mock_request_output(
prompt_token_ids=[1, 2, 3], output_token_ids=[101], finished=False
)
)
# Verify that messages were synchronized
assert len(context._messages) == 2
# Verify the new messages were added correctly
assert context._messages[1].content[0].text == "Response 1"
# Test the specific condition from line 413-414:
# len(self._messages) - self.num_init_messages < len(self.parser.messages)
messages_minus_init = len(context._messages) - context.num_init_messages
parser_messages_count = len(mock_parser.messages)
# After synchronization, they should be equal (no longer less than)
assert messages_minus_init == parser_messages_count
# Test edge case: add one more parser message
mock_parser.messages.append(
Message(
author=Author(role=Role.ASSISTANT, name="assistant"),
content=[TextContent(text="Response 4")],
recipient=Role.USER,
)
)
# Create another output to trigger synchronization again
mock_output2 = create_mock_request_output(
prompt_token_ids=[1, 2, 3], output_token_ids=[102], finished=True
)
context.append_output(mock_output2)
# Verify the fourth message was added, num_init_messages is still 1
assert len(context._messages) == 3
assert context.num_init_messages == 1
assert context._messages[2].content[0].text == "Response 4"