mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 17:05:53 +08:00
Co-authored-by: simon-mo <xmo@berkeley.edu> Co-authored-by: Chang Su <chang.s.su@oracle.com> Co-authored-by: Simon Mo <simon.mo@hey.com> Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com> Co-authored-by: Roger Wang <ywang@roblox.com>
72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
from functools import lru_cache
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from transformers.image_processing_base import BatchFeature
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.inputs.registry import InputContext
|
|
from vllm.logger import init_logger
|
|
from vllm.transformers_utils.processor import get_image_processor
|
|
from vllm.utils import is_list_of
|
|
|
|
from .base import MultiModalData, MultiModalInputs, MultiModalPlugin
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
cached_get_image_processor = lru_cache(get_image_processor)
|
|
|
|
|
|
class ImagePlugin(MultiModalPlugin):
|
|
"""Plugin for image data."""
|
|
|
|
def get_data_key(self) -> str:
|
|
return "image"
|
|
|
|
def _get_hf_image_processor(self, model_config: ModelConfig):
|
|
mm_processor_kwargs = ({} if model_config.mm_processor_kwargs is None
|
|
else model_config.mm_processor_kwargs)
|
|
# We don't explicitly check kwarg overrides to the HF class
|
|
# since the automodel just takes kwargs, so we can't inspect it
|
|
return cached_get_image_processor(
|
|
model_config.model,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
**mm_processor_kwargs)
|
|
|
|
def _default_input_mapper(
|
|
self,
|
|
ctx: InputContext,
|
|
data: MultiModalData[object],
|
|
) -> MultiModalInputs:
|
|
model_config = ctx.model_config
|
|
|
|
# Processed by input processor
|
|
if isinstance(data, BatchFeature):
|
|
return MultiModalInputs(data.data)
|
|
|
|
# PIL image
|
|
if isinstance(data, Image.Image) or is_list_of(data, Image.Image):
|
|
image_processor = self._get_hf_image_processor(model_config)
|
|
|
|
if image_processor is None:
|
|
raise RuntimeError("No HuggingFace processor is available "
|
|
"to process the image object")
|
|
try:
|
|
batch_data = image_processor \
|
|
.preprocess(data, return_tensors="pt") \
|
|
.data
|
|
except Exception:
|
|
logger.error("Failed to process image (%s)", data)
|
|
raise
|
|
|
|
return MultiModalInputs(batch_data)
|
|
|
|
# Image embedding
|
|
elif isinstance(data, torch.Tensor) or is_list_of(data, torch.Tensor):
|
|
return MultiModalInputs({"image_embeds": data})
|
|
|
|
raise TypeError(f"Invalid image type: {type(data)}")
|
|
|
|
def _default_max_multimodal_tokens(self, ctx: InputContext) -> int:
|
|
return 3000
|