mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:05:02 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
128 lines
4.2 KiB
Python
128 lines
4.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
Test:
|
|
|
|
* Tests for MultiHeadAttention layer
|
|
"""
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.attention.layer import MultiHeadAttention
|
|
from vllm.attention.selector import _Backend, _cached_get_attn_backend
|
|
from vllm.platforms import current_platform
|
|
from vllm.platforms.cpu import CpuPlatform
|
|
from vllm.platforms.cuda import CudaPlatform
|
|
from vllm.platforms.rocm import RocmPlatform
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def clear_cache():
|
|
"""Clear lru cache to ensure each test case runs without caching.
|
|
"""
|
|
_cached_get_attn_backend.cache_clear()
|
|
|
|
|
|
@pytest.mark.parametrize("device", ["cpu", "hip", "cuda"])
|
|
def test_mha_attn_platform(device: str):
|
|
"""
|
|
Test the attention selector between different platform and device.
|
|
"""
|
|
torch.set_default_dtype(torch.float16)
|
|
|
|
if device == "cpu":
|
|
with patch("vllm.attention.selector.current_platform", CpuPlatform()):
|
|
attn = MultiHeadAttention(16, 64, scale=1)
|
|
assert attn.attn_backend == _Backend.TORCH_SDPA
|
|
elif device == "hip":
|
|
with patch("vllm.attention.selector.current_platform", RocmPlatform()):
|
|
attn = MultiHeadAttention(16, 64, scale=1)
|
|
assert attn.attn_backend == _Backend.TORCH_SDPA
|
|
else:
|
|
with patch("vllm.attention.selector.current_platform", CudaPlatform()):
|
|
attn = MultiHeadAttention(16, 64, scale=1)
|
|
assert attn.attn_backend == _Backend.XFORMERS
|
|
|
|
with patch("vllm.attention.selector.current_platform", CudaPlatform()):
|
|
attn = MultiHeadAttention(16, 72, scale=1)
|
|
assert attn.attn_backend == _Backend.XFORMERS
|
|
|
|
|
|
def ref_attention(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
scale: float,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Native implementation of scaled dot product attention without mask:
|
|
- query, key, value: [batch_size, seq_len, num_heads, head_size]
|
|
- attn_mask: [batch_size, seq_len, seq_len]
|
|
"""
|
|
query, key, value = (x.transpose(1, 2) for x in (query, key, value))
|
|
attn_weights = scale * torch.matmul(query, key.transpose(2, 3))
|
|
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
|
|
out = torch.matmul(attn_weights, value).transpose(1, 2)
|
|
return out
|
|
|
|
|
|
BATCH_SIZES = [1, 16]
|
|
SEQ_LENS = [1]
|
|
NUM_HEADS = [1, 16]
|
|
NUM_KV_HEADS = [1]
|
|
HEAD_SIZES = [64, 80]
|
|
# flshattF and tritonflashattF supported: {torch.float16, torch.bfloat16}
|
|
DTYPES = [
|
|
torch.half, torch.bfloat16, torch.float
|
|
] if not current_platform.is_rocm() else [torch.half, torch.bfloat16]
|
|
CUDA_DEVICES = ["cuda"]
|
|
|
|
|
|
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
|
|
@pytest.mark.parametrize("seq_len", SEQ_LENS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("num_kv_heads", NUM_KV_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
def test_mha_attn_forward(
|
|
batch_size: int,
|
|
seq_len: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
device: str,
|
|
):
|
|
current_platform.seed_everything(0)
|
|
torch.set_default_device(device)
|
|
torch.set_default_dtype(dtype)
|
|
|
|
q = torch.randn(batch_size, seq_len, num_heads * head_size)
|
|
k = torch.randn(batch_size, seq_len, num_kv_heads * head_size)
|
|
v = torch.randn(batch_size, seq_len, num_kv_heads * head_size)
|
|
scale = 1.0 / head_size**0.5
|
|
attn = MultiHeadAttention(num_heads,
|
|
head_size,
|
|
scale=scale,
|
|
num_kv_heads=num_kv_heads)
|
|
output = attn(q, k, v)
|
|
|
|
assert num_heads % num_kv_heads == 0
|
|
num_queries_per_kv = num_heads // num_kv_heads
|
|
q = q.reshape(batch_size, seq_len, num_heads, head_size)
|
|
k = k.reshape(batch_size, seq_len, num_kv_heads, head_size)
|
|
v = v.reshape(batch_size, seq_len, num_kv_heads, head_size)
|
|
if num_queries_per_kv > 1:
|
|
k = torch.repeat_interleave(k, num_queries_per_kv, dim=2)
|
|
v = torch.repeat_interleave(v, num_queries_per_kv, dim=2)
|
|
|
|
ref_output = ref_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
scale=scale,
|
|
).reshape(batch_size, seq_len, num_heads * head_size)
|
|
torch.testing.assert_close(output, ref_output)
|