2024-06-30 20:15:16 +00:00

110 lines
3.5 KiB
Python

from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
import torch
from torch import nn
class QuantizeMethodBase(ABC):
"""Base class for different quantized methods."""
@abstractmethod
def create_weights(self, layer: torch.nn.Module, *weight_args,
**extra_weight_attrs):
"""Create weights for a layer.
The weights will be set as attributes of the layer."""
raise NotImplementedError
@abstractmethod
def apply(self, layer: torch.nn.Module, *args, **kwargs) -> torch.Tensor:
"""Apply the weights in layer to the input tensor.
Expects create_weights to have been called before on the layer."""
raise NotImplementedError
def process_weights_after_loading(self, layer: nn.Module) -> None:
"""Process the weight after loading.
This can be used for example, to transpose weights for computation.
"""
return
class QuantizationConfig(ABC):
"""Base class for quantization configs."""
@abstractmethod
def get_name(self) -> str:
"""Name of the quantization method."""
raise NotImplementedError
@abstractmethod
def get_supported_act_dtypes(self) -> List[torch.dtype]:
"""List of supported activation dtypes."""
raise NotImplementedError
@classmethod
@abstractmethod
def get_min_capability(cls) -> int:
"""Minimum GPU capability to support the quantization method.
E.g., 70 for Volta, 75 for Turing, 80 for Ampere.
This requirement is due to the custom CUDA kernels used by the
quantization method.
"""
raise NotImplementedError
@staticmethod
@abstractmethod
def get_config_filenames() -> List[str]:
"""List of filenames to search for in the model directory."""
raise NotImplementedError
@classmethod
@abstractmethod
def from_config(cls, config: Dict[str, Any]) -> "QuantizationConfig":
"""Create a config class from the model's quantization config."""
raise NotImplementedError
@classmethod
def override_quantization_method(cls, hf_quant_cfg,
user_quant) -> Optional[str]:
"""
Detects if this quantization method can support a given checkpoint
format by overriding the user specified quantization method --
this method should only be overwritten by subclasses in exceptional
circumstances
"""
return None
@staticmethod
def get_from_keys(config: Dict[str, Any], keys: List[str]) -> Any:
"""Get a value from the model's quantization config."""
for key in keys:
if key in config:
return config[key]
raise ValueError(f"Cannot find any of {keys} in the model's "
"quantization config.")
@abstractmethod
def get_quant_method(
self, layer: torch.nn.Module) -> Optional[QuantizeMethodBase]:
"""Get the quantize method to use for the quantized layer.
Args:
layer: The layer for the quant method.
Returns:
The quantize method. None if the given layer doesn't support quant
method.
"""
raise NotImplementedError
@abstractmethod
def get_scaled_act_names(self) -> List[str]:
"""Returns the activation function names that should be post-scaled.
For now, this is only used by AWQ.
"""
raise NotImplementedError