mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 13:55:01 +08:00
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com> Co-authored-by: Benjamin Chislett <bchislett@nvidia.com>
447 lines
18 KiB
Python
447 lines
18 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import typing
|
|
from collections.abc import Callable, Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm._aiter_ops import rocm_aiter_ops
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.platforms import current_platform
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .deepseek_v2 import (
|
|
DeepseekV2DecoderLayer,
|
|
DeepseekV2MixtureOfExperts,
|
|
DeepseekV2MoE,
|
|
get_spec_layer_idx_from_weight_name,
|
|
)
|
|
from .interfaces import SupportsPP
|
|
from .utils import maybe_prefix
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class SharedHead(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
quant_config: QuantizationConfig | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "head"),
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
return self.norm(hidden_states)
|
|
|
|
|
|
class DeepSeekMultiTokenPredictorLayer(nn.Module):
|
|
def __init__(self, vllm_config: VllmConfig, prefix: str) -> None:
|
|
super().__init__()
|
|
|
|
config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
self.config = config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
|
|
|
|
self.device = current_platform.device_type
|
|
|
|
self.is_v32 = hasattr(config, "index_topk")
|
|
if self.is_v32:
|
|
topk_tokens = config.index_topk
|
|
topk_indices_buffer = torch.empty(
|
|
vllm_config.scheduler_config.max_num_batched_tokens,
|
|
topk_tokens,
|
|
dtype=torch.int32,
|
|
device=self.device,
|
|
)
|
|
else:
|
|
topk_indices_buffer = None
|
|
|
|
self.shared_head = SharedHead(
|
|
config=config, prefix=prefix, quant_config=quant_config
|
|
)
|
|
self.mtp_block = DeepseekV2DecoderLayer(
|
|
vllm_config,
|
|
prefix,
|
|
config=self.config,
|
|
topk_indices_buffer=topk_indices_buffer,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
spec_step_index: int = 0,
|
|
) -> torch.Tensor:
|
|
assert inputs_embeds is not None
|
|
# masking inputs at position 0, as not needed by MTP
|
|
inputs_embeds = torch.where(positions.unsqueeze(-1) == 0, 0, inputs_embeds)
|
|
inputs_embeds = self.enorm(inputs_embeds)
|
|
previous_hidden_states = self.hnorm(previous_hidden_states)
|
|
|
|
hidden_states = self.eh_proj(
|
|
torch.cat([inputs_embeds, previous_hidden_states], dim=-1)
|
|
)
|
|
|
|
hidden_states, residual = self.mtp_block(
|
|
positions=positions, hidden_states=hidden_states, residual=None
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class DeepSeekMultiTokenPredictor(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
self.mtp_start_layer_idx = config.num_hidden_layers
|
|
self.num_mtp_layers = config.num_nextn_predict_layers
|
|
# to map the exact layer index from weights
|
|
|
|
self.layers = torch.nn.ModuleDict(
|
|
{
|
|
str(idx): DeepSeekMultiTokenPredictorLayer(
|
|
vllm_config, f"{prefix}.layers.{idx}"
|
|
)
|
|
for idx in range(
|
|
self.mtp_start_layer_idx,
|
|
self.mtp_start_layer_idx + self.num_mtp_layers,
|
|
)
|
|
}
|
|
)
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
current_step_idx = spec_step_idx % self.num_mtp_layers
|
|
return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
|
|
input_ids,
|
|
positions,
|
|
previous_hidden_states,
|
|
inputs_embeds,
|
|
current_step_idx,
|
|
)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
current_step_idx = spec_step_idx % self.num_mtp_layers
|
|
mtp_layer = self.layers[str(self.mtp_start_layer_idx + current_step_idx)]
|
|
logits = self.logits_processor(
|
|
mtp_layer.shared_head.head, mtp_layer.shared_head(hidden_states)
|
|
)
|
|
return logits
|
|
|
|
|
|
@support_torch_compile
|
|
class DeepSeekMTP(nn.Module, SupportsPP, DeepseekV2MixtureOfExperts):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
self.config = vllm_config.model_config.hf_config
|
|
self.model = DeepSeekMultiTokenPredictor(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
# Set MoE hyperparameters
|
|
self.set_moe_parameters()
|
|
|
|
def set_moe_parameters(self):
|
|
self.expert_weights = []
|
|
self.num_moe_layers = self.config.num_nextn_predict_layers
|
|
self.num_expert_groups = self.config.n_group
|
|
|
|
self.moe_layers = []
|
|
self.moe_mlp_layers = []
|
|
example_moe = None
|
|
for layer in self.model.layers.values():
|
|
assert isinstance(layer, DeepSeekMultiTokenPredictorLayer)
|
|
layer = layer.mtp_block
|
|
assert isinstance(layer, DeepseekV2DecoderLayer)
|
|
if isinstance(layer.mlp, DeepseekV2MoE):
|
|
example_moe = layer.mlp
|
|
self.moe_mlp_layers.append(layer.mlp)
|
|
self.moe_layers.append(layer.mlp.experts)
|
|
self.extract_moe_parameters(example_moe)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(
|
|
input_ids, positions, hidden_states, inputs_embeds, spec_step_idx
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor | None:
|
|
return self.model.compute_logits(hidden_states, spec_step_idx)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
rocm_aiter_moe_shared_expert_enabled = (
|
|
rocm_aiter_ops.is_fusion_moe_shared_experts_enabled()
|
|
)
|
|
stacked_params_mapping = [
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
("fused_qkv_a_proj", "q_a_proj", 0),
|
|
("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
|
|
]
|
|
|
|
expert_params_mapping = SharedFusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.n_routed_experts
|
|
+ (
|
|
self.config.n_shared_experts
|
|
if rocm_aiter_moe_shared_expert_enabled
|
|
else 0
|
|
),
|
|
)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
|
|
if spec_layer is None:
|
|
continue
|
|
is_fusion_moe_shared_experts_layer = (
|
|
rocm_aiter_moe_shared_expert_enabled and ("mlp.shared_experts" in name)
|
|
)
|
|
name = self._rewrite_spec_layer_name(spec_layer, name)
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if ("mlp.experts." in name) and name not in params_dict:
|
|
continue
|
|
if is_fusion_moe_shared_experts_layer:
|
|
continue
|
|
name_mapped = name.replace(weight_name, param_name)
|
|
|
|
# QKV fusion is optional, fall back to normal
|
|
# weight loading if it's not enabled
|
|
if (
|
|
param_name == "fused_qkv_a_proj"
|
|
) and name_mapped not in params_dict:
|
|
continue
|
|
else:
|
|
name = name_mapped
|
|
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Special handling: when AITER fusion_shared_experts is enabled,
|
|
# checkpoints may provide a single widened shared_experts tensor
|
|
# without explicit expert indices
|
|
# (e.g. ...mlp.shared_experts.gate_proj.weight).
|
|
# For models with multiple shared experts, split that tensor
|
|
# evenly into per-shared-expert slices and load them into
|
|
# appended expert slots mlp.experts.{n_routed_experts + j}.*
|
|
# accordingly.
|
|
num_chunks = 1
|
|
if is_fusion_moe_shared_experts_layer:
|
|
num_chunks = getattr(self.config, "n_shared_experts", 1) or 1
|
|
# Determine split axis based on op type
|
|
# gate/up: ColumnParallel → split along dim 0
|
|
# down: RowParallel → split along dim 1
|
|
split_dim = 1 if "down_proj.weight" in name else 0
|
|
total = loaded_weight.shape[split_dim]
|
|
assert total % num_chunks == 0, (
|
|
f"Shared expert weight dim {total} "
|
|
f"not divisible by num_chunks {num_chunks}"
|
|
)
|
|
chunk_size = total // num_chunks
|
|
|
|
for j in range(num_chunks):
|
|
chunk_name = name
|
|
weight_to_load = loaded_weight
|
|
|
|
if is_fusion_moe_shared_experts_layer:
|
|
if split_dim == 0:
|
|
weight_to_load = loaded_weight[
|
|
j * chunk_size : (j + 1) * chunk_size, :
|
|
]
|
|
else:
|
|
weight_to_load = loaded_weight[
|
|
:, j * chunk_size : (j + 1) * chunk_size
|
|
]
|
|
# Synthesize an expert-style name so expert mapping
|
|
# can route it
|
|
chunk_name = name.replace(
|
|
"mlp.shared_experts",
|
|
f"mlp.experts.{self.config.n_routed_experts + j}",
|
|
)
|
|
|
|
# Use expert_params_mapping to locate the destination
|
|
# param and delegate to its expert-aware weight_loader
|
|
# with expert_id.
|
|
is_expert_weight = False
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in chunk_name:
|
|
continue
|
|
|
|
# Anyway, this is an expert weight and should not be
|
|
# attempted to load as other weights later
|
|
is_expert_weight = True
|
|
|
|
# Do not modify `name` since the loop may continue here
|
|
# Instead, create a new variable
|
|
name_mapped = chunk_name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name_mapped]
|
|
# We should ask the weight loader to return success or
|
|
# not here since otherwise we may skip experts with
|
|
# other available replicas.
|
|
weight_loader = typing.cast(
|
|
Callable[..., bool], param.weight_loader
|
|
)
|
|
success = weight_loader(
|
|
param,
|
|
weight_to_load,
|
|
name_mapped,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
return_success=True,
|
|
)
|
|
if success:
|
|
if not is_fusion_moe_shared_experts_layer:
|
|
name = name_mapped
|
|
else:
|
|
loaded_params.add(name_mapped)
|
|
break
|
|
else:
|
|
if is_expert_weight:
|
|
# We've checked that this is an expert weight
|
|
# However it's not mapped locally to this rank
|
|
# So we simply skip it
|
|
continue
|
|
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
# According to DeepSeek-V3 Technical Report, MTP modules
|
|
# shares embedding layer. We only load the first weights.
|
|
if (
|
|
spec_layer != self.model.mtp_start_layer_idx
|
|
and ".layers" not in name
|
|
):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
if not is_fusion_moe_shared_experts_layer:
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
|
|
"""
|
|
Rewrite the weight name to match the format of the original model.
|
|
Add .mtp_block for modules in transformer layer block for spec layer
|
|
and rename shared layer weights to be top level.
|
|
"""
|
|
spec_layer_weight_names = [
|
|
"embed_tokens",
|
|
"enorm",
|
|
"hnorm",
|
|
"eh_proj",
|
|
"shared_head",
|
|
]
|
|
shared_weight_names = ["embed_tokens"]
|
|
spec_layer_weight = False
|
|
shared_weight = False
|
|
for weight_name in spec_layer_weight_names:
|
|
if weight_name in name:
|
|
spec_layer_weight = True
|
|
if weight_name in shared_weight_names:
|
|
shared_weight = True
|
|
break
|
|
if not spec_layer_weight:
|
|
# treat rest weights as weights for transformer layer block
|
|
name = name.replace(
|
|
f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
|
|
)
|
|
elif shared_weight:
|
|
# treat shared weights as top level weights
|
|
name = name.replace(f"model.layers.{spec_layer}.", "model.")
|
|
return name
|