mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 04:05:03 +08:00
468 lines
16 KiB
Python
468 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import math
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Literal
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import BatchFeature, LlavaNextVideoConfig, LlavaNextVideoProcessor
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.models.clip import CLIPVisionModel
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
ImageSize,
|
|
MultiModalDataItems,
|
|
VideoEmbeddingItems,
|
|
VideoProcessorItems,
|
|
)
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.collection_utils import is_list_of
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .llava import init_vision_tower_for_llava
|
|
from .siglip import SiglipVisionModel
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
from .vision import get_vision_encoder_info
|
|
|
|
|
|
class LlavaNextVideoPixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of videos
|
|
- f: Number of frames
|
|
- c: Number of channels (3)
|
|
- h: Height of each frame
|
|
- w: Width of each frame
|
|
|
|
Note that `f` may be different for each batch, in which case
|
|
the data is passed as a list instead of a batched tensor.
|
|
|
|
Note that it only supports one video input for one batch.
|
|
"""
|
|
|
|
type: Literal["pixel_values_videos"] = "pixel_values_videos"
|
|
|
|
pixel_values_videos: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("bn", "f", 3, "h", "w", dynamic_dims={"f"}),
|
|
]
|
|
|
|
|
|
class LlavaNextVideoProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(LlavaNextVideoConfig)
|
|
|
|
def get_vision_encoder_info(self):
|
|
return get_vision_encoder_info(self.get_hf_config())
|
|
|
|
def get_hf_processor(self, **kwargs: object):
|
|
return self.ctx.get_hf_processor(LlavaNextVideoProcessor, **kwargs)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"video": 1}
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
vision_encoder_info = self.get_vision_encoder_info()
|
|
width = height = vision_encoder_info.get_image_size()
|
|
return ImageSize(width=width, height=height)
|
|
|
|
def _get_num_frame_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
hf_config = self.get_hf_config()
|
|
spatial_pool_stride = hf_config.spatial_pool_stride
|
|
|
|
vision_encoder_info = self.get_vision_encoder_info()
|
|
patch_grid_length = vision_encoder_info.get_patch_grid_length()
|
|
pooled_grid_length = math.ceil(patch_grid_length / spatial_pool_stride)
|
|
|
|
return pooled_grid_length * pooled_grid_length
|
|
|
|
def get_num_video_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
num_frames: int,
|
|
) -> int:
|
|
num_frame_tokens = self._get_num_frame_tokens(
|
|
image_width=image_width,
|
|
image_height=image_height,
|
|
)
|
|
|
|
return num_frame_tokens * num_frames
|
|
|
|
def _get_max_video_frames(self, max_tokens: int) -> int:
|
|
target_width, target_height = self.get_image_size_with_most_features()
|
|
|
|
num_frames = 0
|
|
|
|
while True:
|
|
next_num_frames = num_frames + 1
|
|
next_max_tokens = self.get_num_video_tokens(
|
|
image_width=target_width,
|
|
image_height=target_height,
|
|
num_frames=next_num_frames,
|
|
)
|
|
|
|
if next_max_tokens > max_tokens:
|
|
break
|
|
|
|
num_frames = next_num_frames
|
|
|
|
return num_frames
|
|
|
|
def get_num_frames_with_most_features(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> int:
|
|
max_videos = mm_counts.get("video", 0)
|
|
|
|
max_total_frames = self._get_max_video_frames(seq_len)
|
|
|
|
return max(max_total_frames // max(max_videos, 1), 1)
|
|
|
|
|
|
class LlavaNextVideoDummyInputsBuilder(
|
|
BaseDummyInputsBuilder[LlavaNextVideoProcessingInfo]
|
|
):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
video_token = processor.video_token
|
|
|
|
return video_token * num_videos
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
target_width, target_height = self.info.get_image_size_with_most_features()
|
|
target_num_frames = self.info.get_num_frames_with_most_features(
|
|
seq_len, mm_counts
|
|
)
|
|
|
|
video_overrides = mm_options.get("video") if mm_options else None
|
|
|
|
return {
|
|
"video": self._get_dummy_videos(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_frames=target_num_frames,
|
|
num_videos=num_videos,
|
|
overrides=video_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
class LlavaNextVideoMultiModalProcessor(
|
|
BaseMultiModalProcessor[LlavaNextVideoProcessingInfo]
|
|
):
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(pixel_values_videos=MultiModalFieldConfig.batched("video"))
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_config = self.info.get_hf_config()
|
|
video_token_id = hf_config.video_token_index
|
|
|
|
def get_replacement(item_idx: int):
|
|
videos = mm_items.get_items(
|
|
"video", (VideoEmbeddingItems, VideoProcessorItems)
|
|
)
|
|
|
|
if isinstance(videos, VideoEmbeddingItems):
|
|
num_video_tokens = videos.get_feature_size(item_idx)
|
|
else:
|
|
image_size = videos.get_frame_size(item_idx)
|
|
num_video_tokens = self.info.get_num_video_tokens(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
num_frames=videos.get_num_frames(item_idx),
|
|
)
|
|
|
|
return [video_token_id] * num_video_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="video",
|
|
target=[video_token_id],
|
|
replacement=get_replacement,
|
|
),
|
|
]
|
|
|
|
|
|
# adopted from transformers modeling_llava_next_video.py
|
|
class LlavaNextVideoPooler(nn.Module):
|
|
def __init__(self, config: LlavaNextVideoConfig):
|
|
super().__init__()
|
|
|
|
mode = config.spatial_pool_mode
|
|
stride = config.spatial_pool_stride
|
|
image_size = config.vision_config.image_size
|
|
patch_size = config.vision_config.patch_size
|
|
self.image_size = image_size // patch_size**2
|
|
|
|
if mode == "average":
|
|
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
|
elif mode == "max":
|
|
self.pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
|
else:
|
|
# TODO: Support Conv2d pooling layer, need to load weights
|
|
raise ValueError(
|
|
f"Unknown pooling mode: {mode}. Expected [`average`, `max`]"
|
|
)
|
|
|
|
def forward(self, image_features: torch.Tensor):
|
|
ori_width = int(
|
|
math.sqrt(image_features.shape[1] * self.image_size // self.image_size)
|
|
)
|
|
ori_height = int(ori_width * self.image_size // self.image_size)
|
|
|
|
batch_size, _, dim = image_features.shape
|
|
image_features_spatial = image_features.view(
|
|
batch_size, ori_height, ori_height, dim
|
|
).permute(0, 3, 1, 2)
|
|
image_features_spatial = self.pool(image_features_spatial)
|
|
|
|
return image_features_spatial.flatten(2).transpose(1, 2).contiguous()
|
|
|
|
|
|
class LlavaNextMultiModalProjector(nn.Module):
|
|
def __init__(
|
|
self,
|
|
vision_hidden_size: int,
|
|
text_hidden_size: int,
|
|
projector_hidden_act: str,
|
|
multimodal_projector_bias: bool,
|
|
):
|
|
super().__init__()
|
|
|
|
self.linear_1 = nn.Linear(
|
|
vision_hidden_size, text_hidden_size, bias=multimodal_projector_bias
|
|
)
|
|
self.act = get_act_fn(projector_hidden_act)
|
|
self.linear_2 = nn.Linear(
|
|
text_hidden_size, text_hidden_size, bias=multimodal_projector_bias
|
|
)
|
|
|
|
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.linear_1(image_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
LlavaNextVideoMultiModalProcessor,
|
|
info=LlavaNextVideoProcessingInfo,
|
|
dummy_inputs=LlavaNextVideoDummyInputsBuilder,
|
|
)
|
|
class LlavaNextVideoForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
|
merge_by_field_config = True
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
# mapping for new names in checkpoint saved after transformers v4.52
|
|
"model.language_model.": "language_model.model.",
|
|
"model.vision_tower.": "vision_tower.",
|
|
"model.multi_modal_projector.": "multi_modal_projector.",
|
|
"model.image_newline": "image_newline",
|
|
"lm_head.": "language_model.lm_head.",
|
|
}
|
|
)
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<image>"
|
|
if modality.startswith("video"):
|
|
return "<video>"
|
|
|
|
raise ValueError("Only image or video modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
# Initialize the vision tower only up to the required feature layer
|
|
self.vision_tower = init_vision_tower_for_llava(
|
|
config,
|
|
quant_config,
|
|
require_post_norm=False,
|
|
prefix=maybe_prefix(prefix, "vision_tower"),
|
|
)
|
|
self.vision_resampler = LlavaNextVideoPooler(config)
|
|
self.multi_modal_projector = LlavaNextMultiModalProjector(
|
|
vision_hidden_size=config.vision_config.hidden_size,
|
|
text_hidden_size=config.text_config.hidden_size,
|
|
projector_hidden_act=config.projector_hidden_act,
|
|
multimodal_projector_bias=config.multimodal_projector_bias,
|
|
)
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _parse_and_validate_video_input(
|
|
self, **kwargs: object
|
|
) -> LlavaNextVideoPixelInputs | None:
|
|
"""
|
|
A legal video input should have the following dimensions:
|
|
{
|
|
"pixel_values_videos" :
|
|
list[b, Tensor(nb_frames, nb_channels, height, width)]
|
|
}
|
|
"""
|
|
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
|
|
|
|
if pixel_values_videos is None:
|
|
return None
|
|
|
|
expected_h = expected_w = self.config.vision_config.image_size
|
|
return LlavaNextVideoPixelInputs(
|
|
type="pixel_values_videos",
|
|
pixel_values_videos=pixel_values_videos,
|
|
resolve_bindings={
|
|
"h": expected_h,
|
|
"w": expected_w,
|
|
},
|
|
)
|
|
|
|
def _video_pixels_to_features(
|
|
self,
|
|
vision_tower: CLIPVisionModel | SiglipVisionModel,
|
|
pixel_values: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# NOTE: we skip the step to select the vision feature layer since
|
|
# this is already done inside the vision tower
|
|
image_features = vision_tower(
|
|
pixel_values,
|
|
feature_select_strategy=self.config.vision_feature_select_strategy,
|
|
)
|
|
image_features = self.vision_resampler(image_features)
|
|
image_features = self.multi_modal_projector(image_features)
|
|
return image_features
|
|
|
|
def _process_video_pixels(self, inputs: LlavaNextVideoPixelInputs):
|
|
assert self.vision_tower is not None
|
|
|
|
video_pixels = inputs["pixel_values_videos"]
|
|
|
|
if isinstance(video_pixels, torch.Tensor):
|
|
bn, f, c, h, w = video_pixels.shape
|
|
stacked_pixels = video_pixels.view(bn * f, c, h, w)
|
|
stacked_embeddings = self._video_pixels_to_features(
|
|
self.vision_tower, stacked_pixels
|
|
)
|
|
embeds = stacked_embeddings.view(bn, f, *stacked_embeddings.shape[1:])
|
|
|
|
elif is_list_of(video_pixels, torch.Tensor):
|
|
frames_per_videos = [v.shape[0] for v in video_pixels]
|
|
stacked_pixels = torch.cat(video_pixels, dim=0)
|
|
stacked_embeddings = self._video_pixels_to_features(
|
|
self.vision_tower, stacked_pixels
|
|
)
|
|
embeds = torch.split(stacked_embeddings, frames_per_videos, dim=0)
|
|
else:
|
|
raise ValueError(f"Unsupported type of video input {type(video_pixels)}")
|
|
|
|
return [e.flatten(0, 1) for e in embeds]
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
video_input = self._parse_and_validate_video_input(**kwargs)
|
|
if video_input is None:
|
|
return []
|
|
vision_embeddings = self._process_video_pixels(video_input)
|
|
return vision_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
"""Run forward pass for LlaVA-NeXT-Video.
|
|
Args:
|
|
input_ids: Flattened (concatenated) input_ids corresponding to a
|
|
batch.
|
|
pixel_values_videos: Pixels in each frames for each input videos.
|
|
"""
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
# This model doesn't support images for now
|
|
ignore_unexpected_prefixes=["image_newline"],
|
|
)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|