mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 22:45:01 +08:00
Signed-off-by: Mark McLoughlin <markmc@redhat.com> Co-authored-by: Claude <noreply@anthropic.com> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
150 lines
5.0 KiB
Python
150 lines
5.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import ast
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Literal
|
|
|
|
logger = logging.getLogger("mkdocs")
|
|
|
|
ROOT_DIR = Path(__file__).parent.parent.parent.parent
|
|
DOCS_DIR = ROOT_DIR / "docs"
|
|
GENERATED_METRICS_DIR = DOCS_DIR / "generated" / "metrics"
|
|
|
|
# Files to scan for metric definitions - each will generate a separate table
|
|
METRIC_SOURCE_FILES = [
|
|
{"path": "vllm/v1/metrics/loggers.py", "output": "general.md"},
|
|
{
|
|
"path": "vllm/v1/spec_decode/metrics.py",
|
|
"output": "spec_decode.md",
|
|
},
|
|
{
|
|
"path": "vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py",
|
|
"output": "nixl_connector.md",
|
|
},
|
|
]
|
|
|
|
|
|
class MetricExtractor(ast.NodeVisitor):
|
|
"""AST visitor to extract metric definitions."""
|
|
|
|
def __init__(self):
|
|
self.metrics: list[dict[str, str]] = []
|
|
|
|
def visit_Call(self, node: ast.Call) -> None:
|
|
"""Visit function calls to find metric class instantiations."""
|
|
metric_type = self._get_metric_type(node)
|
|
if metric_type:
|
|
name = self._extract_kwarg(node, "name")
|
|
documentation = self._extract_kwarg(node, "documentation")
|
|
|
|
if name:
|
|
self.metrics.append(
|
|
{
|
|
"name": name,
|
|
"type": metric_type,
|
|
"documentation": documentation or "",
|
|
}
|
|
)
|
|
|
|
self.generic_visit(node)
|
|
|
|
def _get_metric_type(self, node: ast.Call) -> str | None:
|
|
"""Determine if this call creates a metric and return its type."""
|
|
metric_type_map = {
|
|
"_gauge_cls": "gauge",
|
|
"_counter_cls": "counter",
|
|
"_histogram_cls": "histogram",
|
|
}
|
|
if isinstance(node.func, ast.Attribute):
|
|
return metric_type_map.get(node.func.attr)
|
|
return None
|
|
|
|
def _extract_kwarg(self, node: ast.Call, key: str) -> str | None:
|
|
"""Extract a keyword argument value from a function call."""
|
|
for keyword in node.keywords:
|
|
if keyword.arg == key:
|
|
return self._get_string_value(keyword.value)
|
|
return None
|
|
|
|
def _get_string_value(self, node: ast.AST) -> str | None:
|
|
"""Extract string value from an AST node."""
|
|
if isinstance(node, ast.Constant):
|
|
return str(node.value) if node.value is not None else None
|
|
return None
|
|
|
|
|
|
def extract_metrics_from_file(filepath: Path) -> list[dict[str, str]]:
|
|
"""Parse a Python file and extract all metric definitions."""
|
|
try:
|
|
with open(filepath, encoding="utf-8") as f:
|
|
source = f.read()
|
|
|
|
tree = ast.parse(source, filename=str(filepath))
|
|
extractor = MetricExtractor()
|
|
extractor.visit(tree)
|
|
return extractor.metrics
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to parse {filepath}: {e}") from e
|
|
|
|
|
|
def generate_markdown_table(metrics: list[dict[str, str]]) -> str:
|
|
"""Generate a markdown table from extracted metrics."""
|
|
if not metrics:
|
|
return "No metrics found.\n"
|
|
|
|
# Sort by type, then by name
|
|
metrics_sorted = sorted(metrics, key=lambda m: (m["type"], m["name"]))
|
|
|
|
lines = []
|
|
lines.append("| Metric Name | Type | Description |")
|
|
lines.append("|-------------|------|-------------|")
|
|
|
|
for metric in metrics_sorted:
|
|
name = metric["name"]
|
|
metric_type = metric["type"].capitalize()
|
|
doc = metric["documentation"].replace("\n", " ").strip()
|
|
lines.append(f"| `{name}` | {metric_type} | {doc} |")
|
|
|
|
return "\n".join(lines) + "\n"
|
|
|
|
|
|
def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
|
|
"""Generate metrics documentation tables from source files."""
|
|
logger.info("Generating metrics documentation")
|
|
|
|
# Create generated directory if it doesn't exist
|
|
GENERATED_METRICS_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
|
total_metrics = 0
|
|
for source_config in METRIC_SOURCE_FILES:
|
|
source_path = source_config["path"]
|
|
output_file = source_config["output"]
|
|
|
|
filepath = ROOT_DIR / source_path
|
|
if not filepath.exists():
|
|
raise FileNotFoundError(f"Metrics source file not found: {filepath}")
|
|
|
|
logger.debug("Extracting metrics from: %s", source_path)
|
|
metrics = extract_metrics_from_file(filepath)
|
|
logger.debug("Found %d metrics in %s", len(metrics), source_path)
|
|
|
|
# Generate and write the markdown table for this source
|
|
table_content = generate_markdown_table(metrics)
|
|
output_path = GENERATED_METRICS_DIR / output_file
|
|
with open(output_path, "w", encoding="utf-8") as f:
|
|
f.write(table_content)
|
|
|
|
total_metrics += len(metrics)
|
|
logger.info(
|
|
"Generated metrics table: %s (%d metrics)",
|
|
output_path.relative_to(ROOT_DIR),
|
|
len(metrics),
|
|
)
|
|
|
|
logger.info(
|
|
"Total metrics generated: %d across %d files",
|
|
total_metrics,
|
|
len(METRIC_SOURCE_FILES),
|
|
)
|