wang.yuqi 7a80b01889
[CI] Resettle pooling entrypoints tests. (#29370)
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io>
2025-11-25 10:39:10 +00:00

91 lines
2.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
from vllm import LLM, PoolingParams
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.platforms import current_platform
if current_platform.is_rocm():
pytest.skip(
"Encoder self-attention is not implemented on ROCm.", allow_module_level=True
)
MODEL_NAME = "intfloat/multilingual-e5-small"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
TOKEN_IDS = [
# Using ID={0, 1, 2, 3} results in NaN values,
# so we add this offset of 1000
[1000],
[1000, 1001],
[1000, 1002, 1001],
[1000, 1003, 1001, 1002],
]
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(
model=MODEL_NAME,
max_num_batched_tokens=32768,
tensor_parallel_size=1,
gpu_memory_utilization=0.75,
enforce_eager=True,
seed=0,
)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.mark.skip_global_cleanup
def test_multiple_pooling_params(llm: LLM):
pooling_params = [
PoolingParams(),
PoolingParams(),
PoolingParams(),
PoolingParams(),
]
# Multiple PoolingParams should be matched with each prompt
outputs = llm.encode(PROMPTS, pooling_params=pooling_params, pooling_task="embed")
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.encode(
PROMPTS, pooling_params=pooling_params[:3], pooling_task="embed"
)
# Single PoolingParams should be applied to every prompt
single_pooling_params = PoolingParams()
outputs = llm.encode(
PROMPTS, pooling_params=single_pooling_params, pooling_task="embed"
)
assert len(PROMPTS) == len(outputs)
# pooling_params is None, default params should be applied
outputs = llm.encode(PROMPTS, pooling_params=None, pooling_task="embed")
assert len(PROMPTS) == len(outputs)
def test_right_side_truncation(llm: LLM):
# Embeddings models should truncate the end of the prompt
tokenizer = llm.get_tokenizer()
assert tokenizer.truncation_side == "right"