vllm/tests/entrypoints/pooling/score/test_offline.py
wang.yuqi 7a80b01889
[CI] Resettle pooling entrypoints tests. (#29370)
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io>
2025-11-25 10:39:10 +00:00

68 lines
1.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
import torch
from tests.models.utils import softmax
from vllm import LLM, PoolingParams
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.platforms import current_platform
if current_platform.is_rocm():
pytest.skip(
"Encoder self-attention is not implemented on ROCm.", allow_module_level=True
)
MODEL_NAME = "tomaarsen/Qwen3-Reranker-0.6B-seq-cls"
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(
model=MODEL_NAME,
max_num_batched_tokens=32768,
tensor_parallel_size=1,
gpu_memory_utilization=0.75,
enforce_eager=True,
seed=0,
)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
def test_pooling_params(llm: LLM):
def get_outputs(use_activation):
text_1 = "What is the capital of France?"
text_2 = "The capital of France is Paris."
outputs = llm.score(
text_1,
text_2,
pooling_params=PoolingParams(use_activation=use_activation),
use_tqdm=False,
)
return torch.tensor([x.outputs.score for x in outputs])
default = get_outputs(use_activation=None)
w_activation = get_outputs(use_activation=True)
wo_activation = get_outputs(use_activation=False)
assert torch.allclose(default, w_activation, atol=1e-2), (
"Default should use activation."
)
assert not torch.allclose(w_activation, wo_activation, atol=1e-2), (
"wo_activation should not use activation."
)
assert torch.allclose(softmax(wo_activation), w_activation, atol=1e-2), (
"w_activation should be close to activation(wo_activation)."
)