vllm/tests/lora/test_olmoe_tp.py
gnovack d69062c67a
add support for --fully-sharded-loras in fused_moe (#28761)
Signed-off-by: gnovack <gnovack@amazon.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-11-19 16:32:00 +08:00

152 lines
5.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import vllm
from vllm.lora.request import LoRARequest
from ..utils import multi_gpu_test
MODEL_PATH = "allenai/OLMoE-1B-7B-0125-Instruct"
PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.
"
##Instruction:
candidate_poll contains tables such as candidate, people. Table candidate has columns such as Candidate_ID, People_ID, Poll_Source, Date, Support_rate, Consider_rate, Oppose_rate, Unsure_rate. Candidate_ID is the primary key.
Table people has columns such as People_ID, Sex, Name, Date_of_Birth, Height, Weight. People_ID is the primary key.
The People_ID of candidate is the foreign key of People_ID of people.
###Input:
{context}
###Response:""" # noqa: E501
EXPECTED_LORA_OUTPUT = [
"SELECT count(*) FROM candidate",
"SELECT count(*) FROM candidate",
"SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
"SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
]
EXPECTED_BASE_MODEL_OUTPUT = [
"SELECT COUNT(Candidate_ID) FROM candidate",
"SELECT COUNT(Candidate_ID) FROM candidate",
"SELECT Candidate_ID, COUNT(*) as Total_Candidates\nFROM candidate\nINNER JOIN people ON candidate.People_ID = people.People_ID", # noqa: E501
"SELECT Candidate_ID, Poll_Source FROM candidate WHERE People_ID IN (SELECT People_ID FROM people) ORDER BY COUNT(*) DESC LIMIT 1", # noqa: E501
]
def generate_and_test(
llm: vllm.LLM, lora_path: str, lora_id: list[int | None] | int | None
) -> None:
prompts = [
PROMPT_TEMPLATE.format(context="How many candidates are there?"),
PROMPT_TEMPLATE.format(context="Count the number of candidates."),
PROMPT_TEMPLATE.format(
context="Which poll resource provided the most number of candidate information?" # noqa: E501
),
PROMPT_TEMPLATE.format(
context="Return the poll resource associated with the most candidates."
),
]
lora_request = None
if isinstance(lora_id, int):
lora_request = LoRARequest(str(lora_id), lora_id, lora_path)
elif isinstance(lora_id, list):
lora_request = [
LoRARequest(str(i), i, lora_path) if i is not None else None
for i in lora_id
]
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=64)
outputs = llm.generate(prompts, sampling_params, lora_request=lora_request)
# Print the outputs.
generated_texts: list[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
for i in range(len(EXPECTED_LORA_OUTPUT)):
req_lora_id = lora_id[i] if isinstance(lora_id, list) else lora_id
expected_output = (
EXPECTED_LORA_OUTPUT[i]
if req_lora_id is not None
else EXPECTED_BASE_MODEL_OUTPUT[i]
)
assert generated_texts[i].startswith(expected_output)
def test_olmoe_lora(olmoe_lora_files):
# We enable enforce_eager=True here to reduce VRAM usage for lora-test CI,
# Otherwise, the lora-test will fail due to CUDA OOM.
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
)
generate_and_test(llm, olmoe_lora_files, lora_id=1)
generate_and_test(llm, olmoe_lora_files, lora_id=2)
def test_olmoe_lora_mixed(olmoe_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
)
generate_and_test(llm, olmoe_lora_files, lora_id=[1, None, 3, None])
@pytest.mark.parametrize("fully_sharded_loras", [False, True])
@multi_gpu_test(num_gpus=2)
def test_olmoe_lora_tp2(olmoe_lora_files, fully_sharded_loras):
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
tensor_parallel_size=2,
fully_sharded_loras=fully_sharded_loras,
)
generate_and_test(llm, olmoe_lora_files, lora_id=1)
generate_and_test(llm, olmoe_lora_files, lora_id=2)
@pytest.mark.parametrize("fully_sharded_loras", [False, True])
@multi_gpu_test(num_gpus=4)
def test_olmoe_lora_tp4(olmoe_lora_files, fully_sharded_loras):
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
tensor_parallel_size=4,
fully_sharded_loras=fully_sharded_loras,
)
generate_and_test(llm, olmoe_lora_files, lora_id=1)
generate_and_test(llm, olmoe_lora_files, lora_id=2)