vllm/csrc/attention/merge_attn_states.cu
2025-11-26 12:45:28 +08:00

210 lines
9.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <optional>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <algorithm>
#include "attention_dtypes.h"
#include "attention_utils.cuh"
namespace vllm {
// Implements section 2.2 of https://www.arxiv.org/pdf/2501.01005
// can be used to combine partial attention results (in the split-KV case)
template <typename scalar_t, const uint NUM_THREADS>
__global__ void merge_attn_states_kernel(
scalar_t* output, float* output_lse, const scalar_t* prefix_output,
const float* prefix_lse, const scalar_t* suffix_output,
const float* suffix_lse, const uint num_tokens, const uint num_heads,
const uint head_size, const uint prefix_head_stride,
const uint output_head_stride) {
using pack_128b_t = uint4;
const uint pack_size = 16 / sizeof(scalar_t);
const uint threads_per_head = head_size / pack_size;
const uint global_idx = blockIdx.x * NUM_THREADS + threadIdx.x;
const uint token_head_threads = num_tokens * num_heads * threads_per_head;
if (global_idx >= token_head_threads) return;
// global_idx -> token_idx + head_idx + pack_idx
const uint token_head_idx = global_idx / threads_per_head;
const uint pack_idx = global_idx % threads_per_head;
const uint token_idx = token_head_idx / num_heads;
const uint head_idx = token_head_idx % num_heads;
const uint pack_offset = pack_idx * pack_size; // (0~15)*8, etc.
const uint src_head_offset = token_idx * num_heads * prefix_head_stride +
head_idx * prefix_head_stride;
const uint dst_head_offset = token_idx * num_heads * output_head_stride +
head_idx * output_head_stride;
const scalar_t* prefix_head_ptr = prefix_output + src_head_offset;
const scalar_t* suffix_head_ptr = suffix_output + src_head_offset;
scalar_t* output_head_ptr = output + dst_head_offset;
float p_lse = prefix_lse[head_idx * num_tokens + token_idx];
float s_lse = suffix_lse[head_idx * num_tokens + token_idx];
p_lse = std::isinf(p_lse) ? -std::numeric_limits<float>::infinity() : p_lse;
s_lse = std::isinf(s_lse) ? -std::numeric_limits<float>::infinity() : s_lse;
const float max_lse = fmaxf(p_lse, s_lse);
/* In certain edge cases, MLA can produce p_lse = s_lse = -inf;
continuing the pipeline then yields NaN. Root cause: with chunked prefill
a batch may be split into two chunks; if a request in that batch has no
prefix hit, every LSE entry for that requests position is -inf, and at
this moment we merge cross-attention at first. For now we simply emit
prefix_output (expected to be all zeros) and prefix_lse (-inf) to fix
this problem.
*/
if (std::isinf(max_lse)) {
if (pack_offset < head_size) {
// Pack 128b load
pack_128b_t p_out_pack = reinterpret_cast<const pack_128b_t*>(
prefix_head_ptr)[pack_offset / pack_size];
// Pack 128b storage
reinterpret_cast<pack_128b_t*>(output_head_ptr)[pack_offset / pack_size] =
p_out_pack;
}
// We only need to write to output_lse once per head.
if (output_lse != nullptr && pack_idx == 0) {
output_lse[head_idx * num_tokens + token_idx] = max_lse;
}
return;
}
p_lse = p_lse - max_lse;
s_lse = s_lse - max_lse;
const float p_se = expf(p_lse);
const float s_se = expf(s_lse);
const float out_se = p_se + s_se;
const float p_scale = p_se / out_se;
const float s_scale = s_se / out_se;
if (pack_offset < head_size) {
// Pack 128b load
pack_128b_t p_out_pack = reinterpret_cast<const pack_128b_t*>(
prefix_head_ptr)[pack_offset / pack_size];
pack_128b_t s_out_pack = reinterpret_cast<const pack_128b_t*>(
suffix_head_ptr)[pack_offset / pack_size];
pack_128b_t o_out_pack;
#pragma unroll
for (uint i = 0; i < pack_size; ++i) {
// Always use float for FMA to keep high precision.
// half(uint16_t), bfloat16, float -> float.
const float p_out_f =
vllm::to_float(reinterpret_cast<const scalar_t*>(&p_out_pack)[i]);
const float s_out_f =
vllm::to_float(reinterpret_cast<const scalar_t*>(&s_out_pack)[i]);
// fma: a * b + c = p_out_f * p_scale + (s_out_f * s_scale)
const float o_out_f = p_out_f * p_scale + (s_out_f * s_scale);
// float -> half(uint16_t), bfloat16, float.
vllm::from_float(reinterpret_cast<scalar_t*>(&o_out_pack)[i], o_out_f);
}
// Pack 128b storage
reinterpret_cast<pack_128b_t*>(output_head_ptr)[pack_offset / pack_size] =
o_out_pack;
}
// We only need to write to output_lse once per head.
if (output_lse != nullptr && pack_idx == 0) {
float out_lse = logf(out_se) + max_lse;
output_lse[head_idx * num_tokens + token_idx] = out_lse;
}
}
} // namespace vllm
// The following macro is used to dispatch the conversion function based on
// the output data type. The FN is a macro that calls a function with
// template<typename scalar_t>.
#define DISPATCH_BY_SCALAR_DTYPE(scalar_dtype, fn) \
{ \
if (scalar_dtype == at::ScalarType::Float) { \
fn(float); \
} else if (scalar_dtype == at::ScalarType::Half) { \
fn(uint16_t); \
} else if (scalar_dtype == at::ScalarType::BFloat16) { \
fn(__nv_bfloat16); \
} else { \
TORCH_CHECK(false, "Unsupported data type of O: ", scalar_dtype); \
} \
}
#define LAUNCH_MERGE_ATTN_STATES(scalar_t, NUM_THREADS) \
{ \
vllm::merge_attn_states_kernel<scalar_t, NUM_THREADS> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<scalar_t*>(output.data_ptr()), output_lse_ptr, \
reinterpret_cast<scalar_t*>(prefix_output.data_ptr()), \
reinterpret_cast<float*>(prefix_lse.data_ptr()), \
reinterpret_cast<scalar_t*>(suffix_output.data_ptr()), \
reinterpret_cast<float*>(suffix_lse.data_ptr()), num_tokens, \
num_heads, head_size, prefix_head_stride, output_head_stride); \
}
/*@brief Merges the attention states from prefix and suffix
* into the output tensor. NUM_TOKENS: n, NUM_HEADS: h, HEAD_SIZE: d
*
* @param output [n,h,d] The output tensor to store the merged attention states.
* @param output_lse [h,d] Optional tensor to store the log-sum-exp values.
* @param prefix_output [n,h,d] The prefix attention states.
* @param prefix_lse [h,n] The log-sum-exp values for the prefix attention
* states.
* @param suffix_output [n,h,d] The suffix attention states.
* @param suffix_lse [h,n] The log-sum-exp values for the suffix attention
* states.
*/
template <typename scalar_t>
void merge_attn_states_launcher(torch::Tensor& output,
std::optional<torch::Tensor> output_lse,
const torch::Tensor& prefix_output,
const torch::Tensor& prefix_lse,
const torch::Tensor& suffix_output,
const torch::Tensor& suffix_lse) {
constexpr uint NUM_THREADS = 128;
const uint num_tokens = output.size(0);
const uint num_heads = output.size(1);
const uint head_size = output.size(2);
const uint prefix_head_stride = prefix_output.stride(1);
const uint output_head_stride = output.stride(1);
const uint pack_size = 16 / sizeof(scalar_t);
TORCH_CHECK(head_size % pack_size == 0,
"headsize must be multiple of pack_size:", pack_size);
float* output_lse_ptr = nullptr;
if (output_lse.has_value()) {
output_lse_ptr = output_lse.value().data_ptr<float>();
}
// Process one pack elements per thread. for float, the
// pack_size is 4 for half/bf16, the pack_size is 8.
const uint threads_per_head = head_size / pack_size;
const uint total_threads = num_tokens * num_heads * threads_per_head;
dim3 block(NUM_THREADS);
dim3 grid((total_threads + NUM_THREADS - 1) / NUM_THREADS);
const c10::cuda::OptionalCUDAGuard device_guard(prefix_output.device());
auto stream = at::cuda::getCurrentCUDAStream();
LAUNCH_MERGE_ATTN_STATES(scalar_t, NUM_THREADS);
}
#define CALL_MERGE_ATTN_STATES_LAUNCHER(scalar_t) \
{ \
merge_attn_states_launcher<scalar_t>(output, output_lse, prefix_output, \
prefix_lse, suffix_output, \
suffix_lse); \
}
void merge_attn_states(torch::Tensor& output,
std::optional<torch::Tensor> output_lse,
const torch::Tensor& prefix_output,
const torch::Tensor& prefix_lse,
const torch::Tensor& suffix_output,
const torch::Tensor& suffix_lse) {
DISPATCH_BY_SCALAR_DTYPE(output.dtype(), CALL_MERGE_ATTN_STATES_LAUNCHER);
}