mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 03:44:58 +08:00
Signed-off-by: gnovack <gnovack@amazon.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
174 lines
6.3 KiB
Plaintext
174 lines
6.3 KiB
Plaintext
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <torch/all.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/cuda/Atomic.cuh>
|
|
|
|
#include "../cuda_compat.h"
|
|
#include "../dispatch_utils.h"
|
|
#include "core/math.hpp"
|
|
|
|
namespace {
|
|
|
|
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
|
|
int32_t col) {
|
|
return row * total_col + col;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// TODO: Refactor common parts with moe_align_sum_kernels
|
|
template <typename scalar_t, typename token_cnts_t>
|
|
__global__ void moe_lora_align_sum_kernel(
|
|
scalar_t* __restrict__ topk_ids, int32_t* token_lora_mapping,
|
|
int64_t block_size, int num_experts, int max_loras, size_t numel,
|
|
int max_num_tokens_padded, int max_num_m_blocks,
|
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
|
int topk_num, int32_t* total_tokens_post_pad, int32_t* adapter_enabled,
|
|
int32_t* lora_ids) {
|
|
const size_t tokens_per_thread = div_ceil(numel, blockDim.x);
|
|
const size_t start_idx = threadIdx.x * tokens_per_thread;
|
|
|
|
int lora_idx = blockIdx.x;
|
|
int lora_id = lora_ids[lora_idx];
|
|
if (lora_id == -1 || adapter_enabled[lora_id] == 0) {
|
|
return;
|
|
}
|
|
extern __shared__ int32_t shared_mem[];
|
|
int32_t* cumsum = shared_mem;
|
|
token_cnts_t* tokens_cnts = (token_cnts_t*)(shared_mem + num_experts + 1);
|
|
|
|
// Initialize sorted_token_ids with numel
|
|
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
|
|
sorted_token_ids[lora_id * max_num_tokens_padded + it] = numel;
|
|
}
|
|
|
|
// Initialize expert_ids with -1
|
|
for (size_t it = threadIdx.x; it < max_num_m_blocks; it += blockDim.x) {
|
|
expert_ids[lora_id * max_num_m_blocks + it] = -1;
|
|
}
|
|
|
|
// Initialize total_tokens_post_pad with 0
|
|
if (threadIdx.x == 0) {
|
|
total_tokens_post_pad[lora_id] = 0;
|
|
}
|
|
|
|
for (int i = 0; i < num_experts; ++i) {
|
|
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
|
|
}
|
|
|
|
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
|
int mask = token_lora_mapping[i / topk_num] == lora_id;
|
|
int idx = index(num_experts, threadIdx.x + 1, topk_ids[i]);
|
|
tokens_cnts[idx] += mask;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
// For each expert we accumulate the token counts from the different threads.
|
|
if (threadIdx.x < num_experts) {
|
|
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
|
|
for (int i = 1; i <= blockDim.x; ++i) {
|
|
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
|
|
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
// We accumulate the token counts of all experts in thread 0.
|
|
if (threadIdx.x == 0) {
|
|
cumsum[0] = 0;
|
|
for (int i = 1; i <= num_experts; ++i) {
|
|
cumsum[i] = cumsum[i - 1] +
|
|
div_ceil(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
|
|
block_size) *
|
|
block_size;
|
|
}
|
|
total_tokens_post_pad[lora_id] = static_cast<int32_t>(cumsum[num_experts]);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
/**
|
|
* For each expert, each thread processes the tokens of the corresponding
|
|
* blocks and stores the corresponding expert_id for each block.
|
|
*/
|
|
if (threadIdx.x < num_experts) {
|
|
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
|
|
i += block_size) {
|
|
expert_ids[index(max_num_m_blocks, lora_id, i / block_size)] =
|
|
threadIdx.x;
|
|
}
|
|
}
|
|
|
|
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
|
int32_t expert_id = topk_ids[i];
|
|
/** The cumsum[expert_id] stores the starting index of the tokens that the
|
|
* expert with expert_id needs to process, and
|
|
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
|
|
* processed by the expert with expert_id within the current thread's token
|
|
* shard.
|
|
*/
|
|
int32_t rank_post_pad =
|
|
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
|
|
cumsum[expert_id];
|
|
|
|
int mask = (int)token_lora_mapping[i / topk_num] == lora_id;
|
|
atomicAdd(
|
|
&sorted_token_ids[index(max_num_tokens_padded, lora_id, rank_post_pad)],
|
|
(i - numel) * mask);
|
|
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] += mask;
|
|
}
|
|
}
|
|
|
|
void moe_lora_align_block_size(
|
|
torch::Tensor topk_ids, torch::Tensor token_lora_mapping,
|
|
int64_t num_experts, int64_t block_size, int64_t max_loras,
|
|
int64_t max_num_tokens_padded, int64_t max_num_m_blocks,
|
|
torch::Tensor sorted_token_ids, torch::Tensor expert_ids,
|
|
torch::Tensor num_tokens_post_pad, torch::Tensor adapter_enabled,
|
|
torch::Tensor lora_ids) {
|
|
const int topk_num = topk_ids.size(1);
|
|
|
|
TORCH_CHECK(block_size > 0, "block_size should be greater than 0. ");
|
|
|
|
int device_max_shared_mem;
|
|
auto dev = topk_ids.get_device();
|
|
cudaDeviceGetAttribute(&device_max_shared_mem,
|
|
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
const int32_t num_thread = max((int32_t)num_experts, 128); // WARP_SIZE,
|
|
TORCH_CHECK(num_thread <= 1024,
|
|
"num_thread must be less than 1024, "
|
|
"and fallback is not implemented yet.");
|
|
const int32_t shared_mem = (num_thread + 1) * num_experts * sizeof(int32_t) +
|
|
(num_experts + 1) * sizeof(int32_t);
|
|
|
|
if (shared_mem > device_max_shared_mem) {
|
|
TORCH_CHECK(false,
|
|
"Shared memory usage exceeds device limit, and global memory "
|
|
"fallback is not implemented yet.");
|
|
}
|
|
|
|
VLLM_DISPATCH_INTEGRAL_TYPES(
|
|
topk_ids.scalar_type(), "moe_lora_align_sum_kernel", [&] {
|
|
dim3 blockDim(num_thread);
|
|
auto kernel = moe_lora_align_sum_kernel<scalar_t, int32_t>;
|
|
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
|
|
(void*)kernel, shared_mem));
|
|
kernel<<<max_loras, blockDim, shared_mem, stream>>>(
|
|
topk_ids.data_ptr<scalar_t>(),
|
|
token_lora_mapping.data_ptr<int32_t>(), block_size, num_experts,
|
|
max_loras, topk_ids.numel(), max_num_tokens_padded,
|
|
max_num_m_blocks, sorted_token_ids.data_ptr<int32_t>(),
|
|
expert_ids.data_ptr<int32_t>(), topk_num,
|
|
num_tokens_post_pad.data_ptr<int32_t>(),
|
|
adapter_enabled.data_ptr<int32_t>(), lora_ids.data_ptr<int32_t>());
|
|
});
|
|
} |