mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 05:34:55 +08:00
Signed-off-by: chenjun <junchen2@amd.com> Signed-off-by: kliuae <kuanfu.liu@embeddedllm.com> Co-authored-by: valarLip <103567126+valarLip@users.noreply.github.com> Co-authored-by: TJian <tunjian.tan@embeddedllm.com>
245 lines
8.5 KiB
Python
245 lines
8.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import pytest
|
|
|
|
from vllm.model_executor.layers.fused_moe.layer import determine_expert_map
|
|
|
|
|
|
def verify_round_robin_pattern(expert_map, ep_rank, ep_size, global_num_experts):
|
|
"""Verify that the expert map follows the round_robin pattern."""
|
|
# Calculate expected local experts (supporting non-divisible cases)
|
|
base_experts = global_num_experts // ep_size
|
|
remainder = global_num_experts % ep_size
|
|
|
|
local_num_experts = base_experts + 1 if ep_rank < remainder else base_experts
|
|
|
|
# Expected expert IDs for this rank in round_robin pattern
|
|
# For non-divisible cases, ranks with extra experts start earlier
|
|
expected_expert_ids = []
|
|
for expert_idx in range(local_num_experts):
|
|
global_expert_id = ep_rank + expert_idx * ep_size
|
|
expected_expert_ids.append(global_expert_id)
|
|
|
|
# Check that only expected experts are mapped to this rank
|
|
for global_expert_id in range(global_num_experts):
|
|
if global_expert_id in expected_expert_ids:
|
|
local_expert_id = expert_map[global_expert_id]
|
|
expected_local_id = expected_expert_ids.index(global_expert_id)
|
|
assert local_expert_id == expected_local_id, (
|
|
f"Global expert {global_expert_id} should map to local expert "
|
|
f"{expected_local_id}, got {local_expert_id}"
|
|
)
|
|
else:
|
|
assert expert_map[global_expert_id] == -1, (
|
|
f"Global expert {global_expert_id} should not be mapped to this rank"
|
|
)
|
|
|
|
# Verify that all local expert IDs are consecutive starting from 0
|
|
local_expert_ids = [expert_map[global_id] for global_id in expected_expert_ids]
|
|
expected_local_ids = list(range(local_num_experts))
|
|
assert local_expert_ids == expected_local_ids, (
|
|
f"Expected local expert IDs {expected_local_ids}, got {local_expert_ids}"
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("expert_placement_strategy", ["round_robin"])
|
|
@pytest.mark.parametrize("world_size", [2, 4])
|
|
def test_expert_placement_various_sizes(expert_placement_strategy, world_size):
|
|
"""Test round_robin expert placement with various expert counts."""
|
|
|
|
# Test with different global_num_experts values
|
|
# Include both divisible and non-divisible cases
|
|
if world_size == 2:
|
|
test_cases = [
|
|
(4, 2), # 4 experts (divisible)
|
|
(8, 2), # 8 experts (divisible)
|
|
(9, 2), # 9 experts (non-divisible)
|
|
(16, 2), # 16 experts (divisible)
|
|
(17, 2), # 17 experts (non-divisible)
|
|
]
|
|
elif world_size == 4:
|
|
test_cases = [
|
|
(8, 4), # 8 experts (divisible)
|
|
(16, 4), # 16 experts (divisible)
|
|
(18, 4), # 18 experts (non-divisible)
|
|
(32, 4), # 32 experts (divisible)
|
|
(33, 4), # 33 experts (non-divisible)
|
|
]
|
|
else:
|
|
test_cases = []
|
|
|
|
for test_global_experts, test_ep_size in test_cases:
|
|
# Ensure ep_size matches world_size
|
|
assert test_ep_size == world_size, (
|
|
f"ep_size {test_ep_size} must equal world_size {world_size}"
|
|
)
|
|
|
|
# Test each rank
|
|
for ep_rank in range(world_size):
|
|
# Calculate expected local experts
|
|
base_experts = test_global_experts // test_ep_size
|
|
remainder = test_global_experts % test_ep_size
|
|
if ep_rank < remainder:
|
|
expected_test_local = base_experts + 1
|
|
else:
|
|
expected_test_local = base_experts
|
|
|
|
test_local_experts, test_expert_map, _ = determine_expert_map(
|
|
ep_size=test_ep_size,
|
|
ep_rank=ep_rank,
|
|
global_num_experts=test_global_experts,
|
|
expert_placement_strategy=expert_placement_strategy,
|
|
)
|
|
|
|
assert test_local_experts == expected_test_local, (
|
|
f"For {test_global_experts} experts on {test_ep_size} ranks, "
|
|
f"rank {ep_rank}: expected {expected_test_local} local"
|
|
f"experts, got {test_local_experts}"
|
|
)
|
|
|
|
if test_expert_map is not None:
|
|
assert test_expert_map.shape == (test_global_experts,), (
|
|
f"Expected expert map shape ({test_global_experts},), "
|
|
f"got {test_expert_map.shape}"
|
|
)
|
|
|
|
# Verify round_robin pattern for this test case
|
|
verify_round_robin_pattern(
|
|
test_expert_map, ep_rank, test_ep_size, test_global_experts
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("expert_placement_strategy", ["round_robin"])
|
|
@pytest.mark.parametrize("world_size", [2, 4])
|
|
def test_expert_placement_edge_cases(expert_placement_strategy, world_size):
|
|
"""Test edge cases for round_robin expert placement."""
|
|
|
|
# Test case 1: ep_size = 1 (should return None for expert_map)
|
|
local_num_experts, expert_map, _ = determine_expert_map(
|
|
ep_size=1,
|
|
ep_rank=0,
|
|
global_num_experts=8,
|
|
expert_placement_strategy=expert_placement_strategy,
|
|
)
|
|
assert local_num_experts == 8, "For ep_size=1, should get all experts"
|
|
assert expert_map is None, "For ep_size=1, expert_map should be None"
|
|
|
|
# Test case 2: ep_size = 0 (should raise assertion)
|
|
with pytest.raises(AssertionError):
|
|
determine_expert_map(
|
|
ep_size=0,
|
|
ep_rank=0,
|
|
global_num_experts=8,
|
|
expert_placement_strategy=expert_placement_strategy,
|
|
)
|
|
|
|
|
|
def test_determine_expert_map_comprehensive():
|
|
"""Test of determine_expert_map function with various configurations."""
|
|
|
|
# Test cases: (ep_size, ep_rank, global_num_experts,
|
|
# expert_placement_strategy, expected_local, expected_map_pattern)
|
|
test_cases = [
|
|
# Round robin placement tests
|
|
(
|
|
2,
|
|
0,
|
|
8,
|
|
"round_robin",
|
|
4,
|
|
[0, -1, 1, -1, 2, -1, 3, -1],
|
|
), # rank 0 gets even experts
|
|
(
|
|
2,
|
|
1,
|
|
8,
|
|
"round_robin",
|
|
4,
|
|
[-1, 0, -1, 1, -1, 2, -1, 3],
|
|
), # rank 1 gets odd experts
|
|
(
|
|
2,
|
|
0,
|
|
9,
|
|
"round_robin",
|
|
5,
|
|
[0, -1, 1, -1, 2, -1, 3, -1, 4],
|
|
), # rank 0 gets 5 experts (even + last)
|
|
(
|
|
2,
|
|
1,
|
|
9,
|
|
"round_robin",
|
|
4,
|
|
[-1, 0, -1, 1, -1, 2, -1, 3, -1],
|
|
), # rank 1 gets 4 experts (odd)
|
|
# 4-rank tests
|
|
(
|
|
4,
|
|
0,
|
|
8,
|
|
"round_robin",
|
|
2,
|
|
[0, -1, -1, -1, 1, -1, -1, -1],
|
|
), # rank 0 gets experts 0, 4
|
|
(
|
|
4,
|
|
1,
|
|
8,
|
|
"round_robin",
|
|
2,
|
|
[-1, 0, -1, -1, -1, 1, -1, -1],
|
|
), # rank 1 gets experts 1, 5
|
|
(
|
|
4,
|
|
2,
|
|
8,
|
|
"round_robin",
|
|
2,
|
|
[-1, -1, 0, -1, -1, -1, 1, -1],
|
|
), # rank 2 gets experts 2, 6
|
|
(
|
|
4,
|
|
3,
|
|
8,
|
|
"round_robin",
|
|
2,
|
|
[-1, -1, -1, 0, -1, -1, -1, 1],
|
|
), # rank 3 gets experts 3, 7
|
|
]
|
|
|
|
for (
|
|
ep_size,
|
|
ep_rank,
|
|
global_num_experts,
|
|
expert_placement_strategy,
|
|
expected_local,
|
|
expected_map_pattern,
|
|
) in test_cases:
|
|
local_num_experts, expert_map, _ = determine_expert_map(
|
|
ep_size=ep_size,
|
|
ep_rank=ep_rank,
|
|
global_num_experts=global_num_experts,
|
|
expert_placement_strategy=expert_placement_strategy,
|
|
)
|
|
|
|
assert local_num_experts == expected_local, (
|
|
f"ep_size={ep_size}, ep_rank={ep_rank}, "
|
|
f"global_num_experts={global_num_experts}, "
|
|
f"expert_placement_strategy={expert_placement_strategy}: "
|
|
f"expected {expected_local} local experts, got {local_num_experts}"
|
|
)
|
|
|
|
if expected_map_pattern is None:
|
|
assert expert_map is None, "Expected expert_map to be None"
|
|
else:
|
|
assert expert_map is not None, "Expected expert_map to not be None"
|
|
actual_map = expert_map.tolist()
|
|
assert actual_map == expected_map_pattern, (
|
|
f"ep_size={ep_size}, ep_rank={ep_rank}, "
|
|
f"global_num_experts={global_num_experts}, "
|
|
f"expert_placement_strategy={expert_placement_strategy}: "
|
|
f"expected map {expected_map_pattern}, got {actual_map}"
|
|
)
|