Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

208 lines
6.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from pathlib import Path
import pytest
import torch
from gguf import GGMLQuantizationType, GGUFReader, ReaderTensor, dequantize
from huggingface_hub import snapshot_download
import vllm._custom_ops as ops
from vllm.model_executor.layers.fused_moe import fused_experts
from vllm.model_executor.layers.quantization.gguf import _fused_moe_gguf
from vllm.platforms import current_platform
GGUF_SAMPLE = snapshot_download("Isotr0py/test-gguf-sample")
GGUF_SAMPLE_MOE = snapshot_download("SzymonOzog/test-gguf-moe-sample")
def get_gguf_sample_tensors(
hidden_size: int, quant_type: GGMLQuantizationType
) -> list[ReaderTensor]:
sample_dir = GGUF_SAMPLE
filename = f"Quant_{quant_type.name}_{hidden_size}.gguf"
sample_file = Path(sample_dir) / filename
return GGUFReader(sample_file).tensors
def get_gguf_MoE_tensors(
hidden_size: int, quant_type: GGMLQuantizationType
) -> list[ReaderTensor]:
sample_dir = GGUF_SAMPLE_MOE
filename = f"Quant_{quant_type.name}_{hidden_size}.gguf"
sample_file = Path(sample_dir) / filename
return GGUFReader(sample_file).tensors
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
# Hidden_size for testing, must match the sample file in HF repo,
# we have `hidden_size = 256, 1024` for test in HF repo currently.
HIDDEN_SIZES = [256, 1024]
NUM_TOKENS = [7, 2050] # Arbitrary values for testing
SEEDS = [0]
QUANT_TYPES = [
# i-matrix
GGMLQuantizationType.IQ1_M,
GGMLQuantizationType.IQ1_S,
GGMLQuantizationType.IQ2_S,
GGMLQuantizationType.IQ2_XS,
GGMLQuantizationType.IQ3_S,
GGMLQuantizationType.IQ3_XXS,
GGMLQuantizationType.IQ4_NL,
GGMLQuantizationType.IQ4_XS,
# k-quants
GGMLQuantizationType.Q2_K,
GGMLQuantizationType.Q3_K,
GGMLQuantizationType.Q4_K,
GGMLQuantizationType.Q5_K,
GGMLQuantizationType.Q6_K,
# standard quantization
GGMLQuantizationType.Q4_0,
GGMLQuantizationType.Q5_0,
GGMLQuantizationType.Q8_0,
]
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("quant_type", QUANT_TYPES)
@torch.inference_mode()
def test_dequantize(
hidden_size: int, dtype: torch.dtype, quant_type: GGMLQuantizationType
):
tensors = get_gguf_sample_tensors(hidden_size, quant_type)
for tensor in tensors:
shape_str = tensor.name.split("_")[-1]
shape = map(int, shape_str.split("x"))
ref_output = torch.tensor(
dequantize(tensor.data, quant_type), device="cuda"
).to(dtype)
output = ops.ggml_dequantize(
torch.tensor(tensor.data, device="cuda"), quant_type, *list(shape), dtype
)
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=4e-2)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("quant_type", QUANT_TYPES)
@torch.inference_mode()
def test_mmvq(hidden_size: int, dtype: torch.dtype, quant_type: GGMLQuantizationType):
current_platform.seed_everything(0)
tensors = get_gguf_sample_tensors(hidden_size, quant_type)
x = torch.rand((1, hidden_size), dtype=dtype, device="cuda")
for tensor in tensors:
weight = torch.tensor(dequantize(tensor.data, quant_type), device="cuda").to(
dtype
)
ref_output = x @ weight.T
qweight = torch.tensor(tensor.data, device="cuda")
output = ops.ggml_mul_mat_vec_a8(qweight, x, quant_type, qweight.shape[0]).to(
dtype
)
torch.testing.assert_close(output, ref_output, atol=1, rtol=1e-1)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize(
"quant_type",
[
# k-quants
GGMLQuantizationType.Q2_K,
GGMLQuantizationType.Q3_K,
GGMLQuantizationType.Q4_K,
GGMLQuantizationType.Q5_K,
GGMLQuantizationType.Q6_K,
# standard quants
GGMLQuantizationType.Q4_0,
GGMLQuantizationType.Q5_0,
GGMLQuantizationType.Q8_0,
],
)
@torch.inference_mode()
def test_mmq(
num_tokens: int,
hidden_size: int,
dtype: torch.dtype,
quant_type: GGMLQuantizationType,
):
current_platform.seed_everything(0)
tensors = get_gguf_sample_tensors(hidden_size, quant_type)
x = torch.rand((num_tokens, hidden_size), dtype=dtype, device="cuda")
for tensor in tensors:
weight = torch.tensor(dequantize(tensor.data, quant_type), device="cuda").to(
dtype
)
ref_output = x @ weight.T
qweight = torch.tensor(tensor.data, device="cuda")
output = ops.ggml_mul_mat_a8(qweight, x, quant_type, qweight.shape[0])
atols = {torch.half: 1, torch.bfloat16: 1.5, torch.float: 1.2}
# test matrix has inputs centered around 0 and lower precision from
# bfloat16 tends to accumulate and can greatly inflate rtol
# since outputs are also very close to 0
rtols = {torch.half: 1e-1, torch.bfloat16: 1e4, torch.float: 2e1}
torch.testing.assert_close(
output, ref_output, atol=atols[dtype], rtol=rtols[dtype]
)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", [512])
@pytest.mark.parametrize("top_k", [4, 8])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("quant_type", QUANT_TYPES)
@torch.inference_mode()
def test_moe(
num_tokens: int,
hidden_size: int,
dtype: torch.dtype,
quant_type: GGMLQuantizationType,
top_k: int,
):
current_platform.seed_everything(0)
H, E = 1024, 256
x = torch.rand((num_tokens, H), dtype=dtype, device="cuda")
topk_weights = torch.rand(num_tokens, top_k, device="cuda", dtype=dtype)
topk_ids = torch.randint(
0, E, (num_tokens, top_k), device="cuda", dtype=torch.int32
)
tensors = get_gguf_MoE_tensors(hidden_size, quant_type)
w13 = tensors[0]
w2 = tensors[1]
w13_dequant = torch.tensor(dequantize(w13.data, quant_type), device="cuda").to(
dtype
)
w2_dequant = torch.tensor(dequantize(w2.data, quant_type), device="cuda").to(dtype)
output = _fused_moe_gguf(
x,
torch.tensor(w13.data, device="cuda"),
torch.tensor(w2.data, device="cuda"),
topk_weights,
topk_ids,
quant_type,
quant_type,
"silu",
)
ref_output = fused_experts(
x, w13_dequant, w2_dequant, topk_weights, topk_ids
).reshape(output.shape)
torch.testing.assert_close(output, ref_output, atol=1, rtol=1e-1)