mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 02:45:19 +08:00
66 lines
1.9 KiB
Python
66 lines
1.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Unit tests for CUDA kernels in cache_kernels.cu."""
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
try:
|
|
from vllm import _custom_ops as ops
|
|
except ImportError:
|
|
pytest.skip(
|
|
"Could not import vllm._custom_ops. (pip install -e .)", allow_module_level=True
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Need CUDA device")
|
|
def test_gather_cache_oob():
|
|
"""
|
|
Tests for OOB read in gather_and_maybe_dequant_cache (Issue #27909).
|
|
This test constructs a boundary case identified in the issue where
|
|
seq_starts causes the block_table offset to read out of bounds.
|
|
"""
|
|
|
|
batch_size = 1
|
|
block_size = 64
|
|
entry_size = 128
|
|
|
|
block_table = torch.tensor([[1, 2]], dtype=torch.int32, device="cuda")
|
|
|
|
# This will result in offset = 128 / block_size = 128 / 64 = 2
|
|
# This will cause the kernel to try to read from
|
|
# block_table[0, 2], but its size is only 2.
|
|
seq_starts = torch.tensor([128], dtype=torch.int32, device="cuda")
|
|
|
|
seq_len = 65
|
|
cu_seq_lens = torch.tensor([0, seq_len], dtype=torch.int32, device="cuda")
|
|
|
|
# src_cache: [num_blocks, block_size, entry_size]
|
|
num_blocks = 5
|
|
src_cache = torch.randn(
|
|
(num_blocks, block_size, entry_size), dtype=torch.float16, device="cuda"
|
|
)
|
|
|
|
dst = torch.empty((seq_len, entry_size), dtype=torch.float16, device="cuda")
|
|
|
|
scale = torch.tensor([1.0], dtype=torch.float32, device="cuda")
|
|
|
|
# Calling the C++ function gather_and_maybe_dequant_cache
|
|
ops.gather_and_maybe_dequant_cache(
|
|
src_cache,
|
|
dst,
|
|
block_table,
|
|
cu_seq_lens,
|
|
batch_size,
|
|
"auto", # kv_cache_dtype
|
|
scale,
|
|
seq_starts,
|
|
)
|
|
|
|
torch.cuda.synchronize()
|
|
assert True
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|