Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

202 lines
6.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
from dataclasses import asdict
from typing import TYPE_CHECKING, Any
import pytest
from mistral_common.multimodal import download_image
from mistral_common.protocol.instruct.chunk import ImageURLChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.tokenizers.multimodal import image_from_chunk
from transformers import AutoProcessor
from vllm import SamplingParams, TextPrompt, TokensPrompt
from vllm.logprobs import Logprob, SampleLogprobs
from vllm.multimodal import MultiModalDataBuiltins
from ....utils import VLLM_PATH, large_gpu_test
from ...utils import check_logprobs_close
if TYPE_CHECKING:
from _typeshed import StrPath
PIXTRAL_ID = "mistralai/Pixtral-12B-2409"
MISTRAL_SMALL_3_1_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
MODELS = [PIXTRAL_ID, MISTRAL_SMALL_3_1_ID]
IMG_URLS = [
"237-400x300.jpg", # "https://huggingface.co/datasets/Isotr0py/mistral-test-images/resolve/main/237-400x300.jpg",
"231-200x300.jpg", # "https://huggingface.co/datasets/Isotr0py/mistral-test-images/resolve/main/237-400x300.jpg",
"27-500x500.jpg", # "https://huggingface.co/datasets/Isotr0py/mistral-test-images/resolve/main/237-400x300.jpg",
"17-150x600.jpg", # "https://huggingface.co/datasets/Isotr0py/mistral-test-images/resolve/main/237-400x300.jpg",
]
PROMPT = "Describe each image in one short sentence."
def _create_msg_format(urls: list[str]) -> list[dict[str, Any]]:
return [
{
"role": "user",
"content": [
{
"type": "text",
"text": PROMPT,
}
]
+ [{"type": "image_url", "image_url": {"url": url}} for url in urls],
}
]
def _create_msg_format_hf(urls: list[str]) -> list[dict[str, Any]]:
return [
{
"role": "user",
"content": [
{
"type": "text",
"content": PROMPT,
},
*({"type": "image", "image": download_image(url)} for url in urls),
],
}
]
def _create_engine_inputs(urls: list[str]) -> TokensPrompt:
msg = _create_msg_format(urls)
tokenizer = MistralTokenizer.from_model("pixtral")
request = ChatCompletionRequest(messages=msg) # type: ignore[type-var]
tokenized = tokenizer.encode_chat_completion(request)
engine_inputs = TokensPrompt(prompt_token_ids=tokenized.tokens)
images = []
for chunk in request.messages[0].content:
if isinstance(chunk, ImageURLChunk):
images.append(image_from_chunk(chunk))
mm_data = MultiModalDataBuiltins(image=images)
engine_inputs["multi_modal_data"] = mm_data
return engine_inputs
def _create_engine_inputs_hf(urls: list[str]) -> TextPrompt:
msg = _create_msg_format_hf(urls)
tokenizer = AutoProcessor.from_pretrained("mistral-community/pixtral-12b")
prompt = tokenizer.apply_chat_template(msg)
images = []
for chunk in msg[0]["content"]:
if chunk["type"] == "image":
images.append(chunk["image"])
mm_data = MultiModalDataBuiltins(image=images)
engine_inputs = TextPrompt(prompt=prompt, multi_modal_data=mm_data)
return engine_inputs
SAMPLING_PARAMS = SamplingParams(max_tokens=512, temperature=0.0, logprobs=5)
LIMIT_MM_PER_PROMPT = dict(image=4)
MAX_MODEL_LEN = [8192, 65536]
FIXTURES_PATH = VLLM_PATH / "tests/models/fixtures"
assert FIXTURES_PATH.exists()
FIXTURE_LOGPROBS_CHAT = {
PIXTRAL_ID: FIXTURES_PATH / "pixtral_chat.json",
MISTRAL_SMALL_3_1_ID: FIXTURES_PATH / "mistral_small_3_chat.json",
}
OutputsLogprobs = list[tuple[list[int], str, SampleLogprobs | None]]
# For the test author to store golden output in JSON
def _dump_outputs_w_logprobs(
outputs: OutputsLogprobs,
filename: "StrPath",
) -> None:
json_data = [
(
tokens,
text,
[
{k: asdict(v) for k, v in token_logprobs.items()}
for token_logprobs in (logprobs or [])
],
)
for tokens, text, logprobs in outputs
]
with open(filename, "w") as f:
json.dump(json_data, f)
def load_outputs_w_logprobs(filename: "StrPath") -> OutputsLogprobs:
with open(filename, "rb") as f:
json_data = json.load(f)
return [
(
tokens,
text,
[
{int(k): Logprob(**v) for k, v in token_logprobs.items()}
for token_logprobs in logprobs
],
)
for tokens, text, logprobs in json_data
]
@large_gpu_test(min_gb=80)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("max_model_len", MAX_MODEL_LEN)
@pytest.mark.parametrize("dtype", ["bfloat16"])
def test_chat(
vllm_runner, max_model_len: int, model: str, dtype: str, local_asset_server
) -> None:
EXPECTED_CHAT_LOGPROBS = load_outputs_w_logprobs(FIXTURE_LOGPROBS_CHAT[model])
with vllm_runner(
model,
dtype=dtype,
tokenizer_mode="mistral",
load_format="mistral",
config_format="mistral",
max_model_len=max_model_len,
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
) as vllm_model:
outputs = []
urls_all = [local_asset_server.url_for(u) for u in IMG_URLS]
msgs = [
_create_msg_format(urls_all[:1]),
_create_msg_format(urls_all[:2]),
_create_msg_format(urls_all),
]
for msg in msgs:
output = vllm_model.llm.chat(msg, sampling_params=SAMPLING_PARAMS)
outputs.extend(output)
logprobs = vllm_runner._final_steps_generate_w_logprobs(outputs)
# Remove last `None` prompt_logprobs to compare with fixture
for i in range(len(logprobs)):
assert logprobs[i][-1] is None
logprobs[i] = logprobs[i][:-1]
check_logprobs_close(
outputs_0_lst=EXPECTED_CHAT_LOGPROBS,
outputs_1_lst=logprobs,
name_0="h100_ref",
name_1="output",
)