Lukas Geiger a9705a290a
[Model][QwenVL] Replace torch.repeat_interleave with faster np.repeat (#28964)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-11-19 22:04:23 -08:00

474 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, TypedDict
import numpy.typing as npt
import pytest
import torch
from PIL import Image
from vllm.multimodal.image import rescale_image_size
from vllm.multimodal.video import rescale_video_size, sample_frames_from_video
from ....conftest import (
IMAGE_ASSETS,
VIDEO_ASSETS,
PromptImageInput,
PromptVideoInput,
VllmRunner,
)
from ...utils import check_logprobs_close
@pytest.fixture(scope="function", autouse=True)
def enable_pickle(monkeypatch):
"""`LLM.apply_model` requires pickling a function."""
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
models = ["Qwen/Qwen2-VL-2B-Instruct"]
target_dtype = "half"
IMAGE_PLACEHOLDER = "<|vision_start|><|image_pad|><|vision_end|>"
VIDEO_PLACEHOLDER = "<|vision_start|><|video_pad|><|vision_end|>"
MODEL_HIDDEN_SIZE = 1536
def qwen2_vl_chat_template(*query):
return f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{''.join(query)}<|im_end|><|im_start|>assistant\n" # noqa: E501
IMAGE_PROMPTS = IMAGE_ASSETS.prompts(
{
"stop_sign": qwen2_vl_chat_template(
IMAGE_PLACEHOLDER,
"What is the biggest text's content in this image?",
),
"cherry_blossom": qwen2_vl_chat_template(
IMAGE_PLACEHOLDER,
"What is the season shown in this image? ",
"Reply with a short sentence (no more than 20 words)",
),
}
)
VIDEO_PROMPTS = VIDEO_ASSETS.prompts(
{
"baby_reading": qwen2_vl_chat_template(
VIDEO_PLACEHOLDER,
"Describe this video with a short sentence ",
"(no more than 20 words)",
),
}
)
MULTIIMAGE_PROMPT = qwen2_vl_chat_template(
IMAGE_PLACEHOLDER,
IMAGE_PLACEHOLDER,
"Describe these two images separately. ",
"For each image, reply with a short sentence ",
"(no more than 10 words).",
)
class Qwen2VLPromptImageEmbeddingInput(TypedDict):
image_embeds: torch.Tensor
image_grid_thw: torch.Tensor
class Qwen2VLPromptVideoEmbeddingInput(TypedDict):
video_embeds: torch.Tensor
video_grid_thw: torch.Tensor
def batch_make_image_embeddings(
image_batches: list[Image.Image | list[Image.Image]],
processor,
llm: VllmRunner,
) -> list[Qwen2VLPromptImageEmbeddingInput]:
"""batched image embeddings for Qwen2-VL
This will infer all images' embeddings in a single batch,
and split the result according to input batches.
image_batches:
- Single-image batches: `list[Image.Image]`
- Multiple-image batches: `list[list[Image.Image]]]`
returns: `list[Qwen2VLPromptImageEmbeddingInput]`
"""
image_batches_: list[Any] = image_batches[:]
# convert single-image batches to multiple-image batches
for idx in range(len(image_batches_)):
if not isinstance(image_batches_[idx], list):
image_batches_[idx] = [image_batches_[idx]]
assert isinstance(image_batches_[idx], list)
# append all images into a list (as a batch)
images: list[Image.Image] = []
for image_batch in image_batches_:
images += image_batch
# image to pixel values
image_processor = processor.image_processor
preprocess_result = image_processor.preprocess(
images=images, return_tensors="pt"
).data
pixel_values = preprocess_result["pixel_values"]
image_grid_thw = preprocess_result["image_grid_thw"]
# pixel values to embeddings & grid_thws
def get_image_embeds(model):
with torch.no_grad():
visual = model.visual
pixel_values_on_device = pixel_values.to(visual.device, dtype=visual.dtype)
return visual(pixel_values_on_device, grid_thw=image_grid_thw).cpu()
image_embeds = torch.concat(llm.apply_model(get_image_embeds))
# split into original batches
result: list[Qwen2VLPromptImageEmbeddingInput] = []
image_counter = 0
embed_counter = 0
for image_batch in image_batches_:
cur_batch_image_count = len(image_batch)
merge_size = image_processor.merge_size
cur_batch_embed_len = sum(
grid_thw.prod(-1) // merge_size // merge_size
for grid_thw in image_grid_thw[
image_counter : image_counter + cur_batch_image_count
]
)
result.append(
{
"image_embeds": image_embeds[
embed_counter : embed_counter + cur_batch_embed_len
],
"image_grid_thw": image_grid_thw[
image_counter : image_counter + cur_batch_image_count
],
}
)
embed_counter += cur_batch_embed_len
image_counter += cur_batch_image_count
# ensure we don't lose any images or embeddings
assert embed_counter == image_embeds.size(0)
assert image_counter == image_grid_thw.size(0)
assert len(image_batches) == len(result)
return result
def batch_make_video_embeddings(
video_batches: PromptVideoInput, processor, llm: VllmRunner
) -> list[Qwen2VLPromptVideoEmbeddingInput]:
"""batched video embeddings for Qwen2-VL
A NDArray represents a single video's all frames.
This will infer all videos' embeddings in a single batch,
and split the result according to input batches.
video_batches:
- Single-video batches: `list[NDArray]`
- Multiple-video batches: `list[list[NDArray]]`
"""
video_batches_: list[Any] = video_batches[:]
for idx in range(len(video_batches_)):
if not isinstance(video_batches_[idx], list):
single_video_batch: list[npt.NDArray] = [video_batches_[idx]]
video_batches_[idx] = single_video_batch
assert isinstance(video_batches_[idx], list)
# append all videos into a list (as a batch)
videos: list[npt.NDArray] = []
for video_batch in video_batches_:
videos += video_batch
# video to pixel values
image_processor = processor.image_processor
preprocess_result = image_processor.preprocess(
images=None, videos=videos, return_tensors="pt"
).data
pixel_values = preprocess_result["pixel_values_videos"]
video_grid_thw = preprocess_result["video_grid_thw"]
# pixel values to embeddings & grid_thws
def get_image_embeds(model):
with torch.no_grad():
visual = model.visual
pixel_values_on_device = pixel_values.to(visual.device, dtype=visual.dtype)
return visual(pixel_values_on_device, grid_thw=video_grid_thw).cpu()
video_embeds = torch.concat(llm.apply_model(get_image_embeds))
# split into original batches
result: list[Qwen2VLPromptVideoEmbeddingInput] = []
video_counter = 0
embed_counter = 0
for video_batch in video_batches_:
cur_batch_video_count = len(video_batch)
merge_size = image_processor.merge_size
cur_batch_embed_len = sum(
grid_thw.prod(-1) // merge_size // merge_size
for grid_thw in video_grid_thw[
video_counter : video_counter + cur_batch_video_count
]
)
result.append(
{
"video_embeds": video_embeds[
embed_counter : embed_counter + cur_batch_embed_len
],
"video_grid_thw": video_grid_thw[
video_counter : video_counter + cur_batch_video_count
],
}
)
embed_counter += cur_batch_embed_len
video_counter += cur_batch_video_count
# ensure we don't lose any videos or embeddings
assert embed_counter == video_embeds.size(0)
assert video_counter == video_grid_thw.size(0)
assert len(video_batches) == len(result)
return result
def run_embedding_input_test(
vllm_runner: type[VllmRunner],
inputs: list[tuple[list[str], PromptImageInput, PromptVideoInput]],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
mm_limit: int,
tensor_parallel_size: int,
distributed_executor_backend: str | None = None,
):
"""Inference result should be the same between
original image/video input and image/video embeddings input.
"""
from transformers import AutoProcessor # noqa: F401
processor = AutoProcessor.from_pretrained(model)
# max_model_len should be greater than image_feature_size
with vllm_runner(
model,
runner="generate",
max_model_len=4000,
max_num_seqs=3,
dtype=dtype,
limit_mm_per_prompt={"image": mm_limit, "video": mm_limit},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
default_torch_num_threads=1,
enable_mm_embeds=True,
) as vllm_model:
outputs_per_case_for_original_input = [
vllm_model.generate_greedy_logprobs(
prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images or None,
videos=videos or None,
)
for prompts, images, videos in inputs
]
outputs_per_case_for_embeddings_input = [
vllm_model.generate_greedy_logprobs(
prompts,
max_tokens,
num_logprobs=num_logprobs,
images=batch_make_image_embeddings(images, processor, vllm_model)
if images
else None,
videos=batch_make_video_embeddings(videos, processor, vllm_model)
if videos
else None,
)
for prompts, images, videos in inputs
]
for outputs_for_original_input, outputs_for_embeddings_input in zip(
outputs_per_case_for_original_input, outputs_per_case_for_embeddings_input
):
check_logprobs_close(
outputs_0_lst=outputs_for_original_input,
outputs_1_lst=outputs_for_embeddings_input,
name_0="original_input",
name_1="embeddings_input",
)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# Single-scale
[0.5],
# Single-scale, batched
[0.5, 0.5],
# Multi-scale
[0.25, 0.5, 0.5],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_qwen2_vl_image_embeddings_input(
vllm_runner,
image_assets,
model,
size_factors,
dtype,
max_tokens,
num_logprobs,
monkeypatch,
) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case: list[tuple[list[str], PromptImageInput, PromptVideoInput]] = [
(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
[],
)
for image, prompt in zip(images, IMAGE_PROMPTS)
]
run_embedding_input_test(
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
[],
# Single-scale
[0.5],
# Single-scale, batched
[0.5, 0.5],
# Multi-scale
[0.25, 0.5, 0.5],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_qwen2_vl_multiple_image_embeddings_input(
vllm_runner,
image_assets,
model,
size_factors,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case: list[tuple[list[str], PromptImageInput, PromptVideoInput]] = [
(
[MULTIIMAGE_PROMPT for _ in size_factors],
[
[rescale_image_size(image, factor) for image in images]
for factor in size_factors
],
[],
)
]
run_embedding_input_test(
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=2,
tensor_parallel_size=1,
)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# Single-scale
[0.5],
# Single-scale, batched
[0.5, 0.5],
# Multi-scale
[0.25, 0.25, 0.5],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_qwen2_vl_video_embeddings_input(
vllm_runner,
video_assets,
model,
size_factors,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
num_frames = 4
sampled_vids = [
sample_frames_from_video(asset.np_ndarrays, num_frames)
for asset in video_assets
]
inputs_per_case: list[tuple[list[str], PromptImageInput, PromptVideoInput]] = [
(
[prompt for _ in size_factors],
[],
[rescale_video_size(video, factor) for factor in size_factors],
)
for video, prompt in zip(sampled_vids, VIDEO_PROMPTS)
]
run_embedding_input_test(
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)