Julien Denize c6187f55f7
Refactor MistralTokenizer (#26358)
Signed-off-by: Julien Denize <julien.denize@mistral.ai>
2025-10-09 22:48:58 +00:00

115 lines
3.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import pytest
import pytest_asyncio
from mistral_common.audio import Audio
from mistral_common.protocol.instruct.chunk import AudioChunk, RawAudio, TextChunk
from mistral_common.protocol.instruct.messages import UserMessage
from vllm.transformers_utils.tokenizer import MistralTokenizer
from ....conftest import AudioTestAssets
from ....utils import RemoteOpenAIServer
from .test_ultravox import MULTI_AUDIO_PROMPT, run_multi_audio_test
MODEL_NAME = "mistralai/Voxtral-Mini-3B-2507"
MISTRAL_FORMAT_ARGS = [
"--tokenizer_mode",
"mistral",
"--config_format",
"mistral",
"--load_format",
"mistral",
]
@pytest.fixture()
def server(request, audio_assets: AudioTestAssets):
args = [
"--enforce-eager",
"--limit-mm-per-prompt",
json.dumps({"audio": len(audio_assets)}),
] + MISTRAL_FORMAT_ARGS
with RemoteOpenAIServer(
MODEL_NAME, args, env_dict={"VLLM_AUDIO_FETCH_TIMEOUT": "30"}
) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
def _get_prompt(audio_assets, question):
tokenizer = MistralTokenizer.from_pretrained(MODEL_NAME)
audios = [
Audio.from_file(str(audio_assets[i].get_local_path()), strict=False)
for i in range(len(audio_assets))
]
audio_chunks = [
AudioChunk(input_audio=RawAudio.from_audio(audio)) for audio in audios
]
text_chunk = TextChunk(text=question)
messages = [UserMessage(content=[*audio_chunks, text_chunk]).to_openai()]
return tokenizer.apply_chat_template(messages=messages)
@pytest.mark.core_model
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models_with_multiple_audios(
vllm_runner,
audio_assets: AudioTestAssets,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
vllm_prompt = _get_prompt(audio_assets, MULTI_AUDIO_PROMPT)
run_multi_audio_test(
vllm_runner,
[(vllm_prompt, [audio.audio_and_sample_rate for audio in audio_assets])],
MODEL_NAME,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tokenizer_mode="mistral",
)
@pytest.mark.asyncio
async def test_online_serving(client, audio_assets: AudioTestAssets):
"""Exercises online serving with/without chunked prefill enabled."""
def asset_to_chunk(asset):
audio = Audio.from_file(str(asset.get_local_path()), strict=False)
audio.format = "wav"
audio_dict = AudioChunk.from_audio(audio).to_openai()
return audio_dict
audio_chunks = [asset_to_chunk(asset) for asset in audio_assets]
text = f"What's happening in these {len(audio_assets)} audio clips?"
messages = [
{
"role": "user",
"content": [*audio_chunks, {"type": "text", "text": text}],
}
]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME, messages=messages, max_tokens=10
)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"