vllm/tests/models/quantization/test_bitsandbytes.py
Julien Denize 57430fc95c
Default model load/config/tokenizer to mistral format if relevant files exist (#28659)
Signed-off-by: Julien Denize <julien.denize@mistral.ai>
Signed-off-by: Julien Denize <40604584+juliendenize@users.noreply.github.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-11-21 13:58:59 -08:00

291 lines
9.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests whether bitsandbytes computation is enabled correctly.
Run `pytest tests/quantization/test_bitsandbytes.py`.
"""
import pytest
from transformers import BitsAndBytesConfig
from tests.quantization.utils import is_quant_method_supported
from vllm.platforms import current_platform
from ...utils import compare_two_settings, multi_gpu_test
from ..utils import check_embeddings_close, check_logprobs_close
if current_platform.is_rocm():
from vllm.platforms.rocm import on_gfx9
pytestmark = pytest.mark.skipif(
on_gfx9(),
reason="bitsandbytes not supported on gfx9 (warp size 64 limitation)",
)
models_4bit_to_test = [
("facebook/opt-125m", "quantize opt model inflight"),
(
"mistralai/Mistral-7B-Instruct-v0.3",
"quantize inflight model with both HF and Mistral format weights",
),
]
models_4bit_to_embedding_test = [
("intfloat/e5-mistral-7b-instruct", "quantize embedding model inflight"),
]
models_4bit_to_moe_test = [
("allenai/OLMoE-1B-7B-0125-Instruct", "quantize moe model inflight"),
]
models_pre_qaunt_4bit_to_test = [
(
"PrunaAI/Einstein-v6.1-Llama3-8B-bnb-4bit-smashed",
"read pre-quantized 4-bit FP4 model",
),
("poedator/opt-125m-bnb-4bit", "read pre-quantized 4-bit NF4 opt model"),
]
models_pre_quant_8bit_to_test = [
("meta-llama/Llama-Guard-3-8B-INT8", "read pre-quantized llama 8-bit model"),
("yec019/fbopt-350m-8bit", "read pre-quantized 8-bit opt model"),
]
@pytest.mark.skipif(
not is_quant_method_supported("bitsandbytes"),
reason="bitsandbytes is not supported on this GPU type.",
)
@pytest.mark.parametrize("model_name, description", models_4bit_to_test)
def test_load_4bit_bnb_model(
hf_runner, vllm_runner, example_prompts, model_name, description
) -> None:
hf_model_kwargs = dict(quantization_config=BitsAndBytesConfig(load_in_4bit=True))
validate_generated_texts(
hf_runner, vllm_runner, example_prompts[:1], model_name, False, hf_model_kwargs
)
@pytest.mark.skipif(
not is_quant_method_supported("bitsandbytes"),
reason="bitsandbytes is not supported on this GPU type.",
)
@pytest.mark.parametrize("model_name, description", models_pre_qaunt_4bit_to_test)
def test_load_pre_quant_4bit_bnb_model(
hf_runner, vllm_runner, example_prompts, model_name, description
) -> None:
validate_generated_texts(
hf_runner, vllm_runner, example_prompts[:1], model_name, True
)
@pytest.mark.skipif(
not is_quant_method_supported("bitsandbytes"),
reason="bitsandbytes is not supported on this GPU type.",
)
@pytest.mark.parametrize("model_name, description", models_pre_quant_8bit_to_test)
def test_load_8bit_bnb_model(
hf_runner, vllm_runner, example_prompts, model_name, description
) -> None:
validate_generated_texts(
hf_runner, vllm_runner, example_prompts[:1], model_name, True
)
@pytest.mark.skipif(
not is_quant_method_supported("bitsandbytes"),
reason="bitsandbytes is not supported on this GPU type.",
)
@pytest.mark.parametrize("model_name, description", models_4bit_to_test)
@multi_gpu_test(num_gpus=2)
def test_load_tp_4bit_bnb_model(
hf_runner, vllm_runner, example_prompts, model_name, description
) -> None:
hf_model_kwargs = dict(quantization_config=BitsAndBytesConfig(load_in_4bit=True))
validate_generated_texts(
hf_runner,
vllm_runner,
example_prompts[:1],
model_name,
False,
hf_model_kwargs,
vllm_tp_size=2,
)
@pytest.mark.skipif(
not is_quant_method_supported("bitsandbytes"),
reason="bitsandbytes is not supported on this GPU type.",
)
@pytest.mark.parametrize("model_name, description", models_4bit_to_test)
@multi_gpu_test(num_gpus=2)
def test_load_pp_4bit_bnb_model(model_name, description) -> None:
common_args = [
"--disable-log-stats",
"--dtype",
"bfloat16",
"--enable-prefix-caching",
"--quantization",
"bitsandbytes",
"--gpu-memory-utilization",
"0.7",
]
pp_args = [
*common_args,
"--pipeline-parallel-size",
"2",
]
compare_two_settings(model_name, common_args, pp_args)
@pytest.mark.skipif(
not is_quant_method_supported("bitsandbytes"),
reason="bitsandbytes is not supported on this GPU type.",
)
@pytest.mark.parametrize("model_name, description", models_4bit_to_moe_test)
def test_4bit_bnb_moe_model(
hf_runner, vllm_runner, example_prompts, model_name, description
) -> None:
hf_model_kwargs = dict(
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
)
with vllm_runner(
model_name,
quantization="bitsandbytes",
enforce_eager=False,
default_torch_num_threads=1,
) as llm:
vllm_outputs = llm.generate_greedy_logprobs(
example_prompts, max_tokens=32, num_logprobs=5
)
with hf_runner(
model_name, model_kwargs=hf_model_kwargs, default_torch_num_threads=1
) as llm:
transformers_outputs = llm.generate_greedy_logprobs_limit(
example_prompts, max_tokens=32, num_logprobs=5
)
check_logprobs_close(
outputs_0_lst=transformers_outputs,
outputs_1_lst=vllm_outputs,
name_0="transformers",
name_1="vllm",
)
@pytest.mark.skipif(
not is_quant_method_supported("bitsandbytes"),
reason="bitsandbytes is not supported on this GPU type.",
)
@pytest.mark.parametrize("model_name, description", models_4bit_to_embedding_test)
@pytest.mark.parametrize("dtype", ["half"])
def test_4bit_bnb_embedding_model(
model_name,
description,
hf_runner,
vllm_runner,
example_prompts,
dtype: str,
) -> None:
# The example_prompts has ending "\n", for example:
# "Write a short story about a robot that dreams for the first time.\n"
# sentence_transformers will strip the input texts, see:
# https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159
# This makes the input_ids different between hf_model and vllm_model.
# So we need to strip the input texts to avoid test failing.
example_prompts = [str(s).strip() for s in example_prompts]
# Inflight 4bit quantization
with vllm_runner(
model_name,
runner="pooling",
dtype=dtype,
gpu_memory_utilization=0.5,
quantization="bitsandbytes",
default_torch_num_threads=1,
) as vllm_model:
vllm_outputs = vllm_model.embed(example_prompts)
hf_model_kwargs = dict(quantization_config=BitsAndBytesConfig(load_in_4bit=True))
with hf_runner(
model_name,
dtype=dtype,
model_kwargs=hf_model_kwargs,
is_sentence_transformer=True,
default_torch_num_threads=1,
) as hf_model:
hf_outputs = hf_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=5e-2,
)
def log_generated_texts(prompts, outputs, runner_name):
logged_texts = []
for i, (_, generated_text) in enumerate(outputs):
log_entry = {
"prompt": prompts[i],
"runner_name": runner_name,
"generated_text": generated_text,
}
logged_texts.append(log_entry)
return logged_texts
def validate_generated_texts(
hf_runner,
vllm_runner,
prompts,
model_name,
pre_quant=False,
hf_model_kwargs=None,
vllm_tp_size=1,
max_tokens=8,
):
# NOTE: run vLLM first, as it requires a clean process
# when using distributed inference
with vllm_runner(
model_name,
quantization=None if pre_quant else "bitsandbytes",
tensor_parallel_size=vllm_tp_size,
enforce_eager=False,
default_torch_num_threads=1,
tokenizer_mode="hf",
load_format="hf",
config_format="hf",
) as llm:
vllm_outputs = llm.generate_greedy(prompts, max_tokens)
vllm_logs = log_generated_texts(prompts, vllm_outputs, "VllmRunner")
if hf_model_kwargs is None:
hf_model_kwargs = {}
# Run with HF runner
with hf_runner(
model_name, model_kwargs=hf_model_kwargs, default_torch_num_threads=1
) as llm:
hf_outputs = llm.generate_greedy(prompts, max_tokens)
hf_logs = log_generated_texts(prompts, hf_outputs, "HfRunner")
# Compare the generated strings
for hf_log, vllm_log in zip(hf_logs, vllm_logs):
hf_str = hf_log["generated_text"]
vllm_str = vllm_log["generated_text"]
prompt = hf_log["prompt"]
assert hf_str == vllm_str, (
f"Model: {model_name}"
f"Mismatch between HF and vLLM outputs:\n"
f"Prompt: {prompt}\n"
f"HF Output: '{hf_str}'\n"
f"vLLM Output: '{vllm_str}'"
)