vllm/tests/models/quantization/test_gpt_oss_attn_quantization.py
xuebwang-amd 5a1271d83a
[Quantization] fix attention quantization of gpt_oss model (#27334)
Signed-off-by: xuebwang-amd <xuebwang@amd.com>
2025-11-11 12:06:00 -05:00

81 lines
2.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Test attention quantization of gpt-oss model.
The qkv_proj and o_proj in self_attention can be either quantized or excluded.
Run `pytest tests/models/quantization/test_gpt_oss_attn_quantization.py`.
"""
import importlib
import importlib.metadata
from dataclasses import dataclass
import huggingface_hub
import lm_eval
import pytest
from packaging import version
MODEL_NAMES = ["amd/gpt-oss-20b-customized-attention-quantization"]
QUARK_MXFP4_AVAILABLE = importlib.util.find_spec("quark") is not None and version.parse(
importlib.metadata.version("amd-quark")
) >= version.parse("0.8.99")
def has_huggingface_access(repo):
try:
huggingface_hub.list_repo_refs(repo)
return True
except huggingface_hub.errors.RepositoryNotFoundError:
return False
HF_HUB_AMD_ORG_ACCESS = all(
[has_huggingface_access(model_name) for model_name in MODEL_NAMES]
)
@dataclass
class ModelCase:
model_id: str
tp: int
@dataclass
class EvaluationConfig:
model_name: str
def get_model_args(self) -> str:
return (
f"pretrained={self.model_name},"
"tensor_parallel_size=4,dtype=auto,gpu_memory_utilization=0.9,trust_remote_code=False"
)
EXPECTED_ACCURACIES = {"arc_challenge": 0.20}
@pytest.mark.skipif(not QUARK_MXFP4_AVAILABLE, reason="amd-quark>=0.9 is not available")
@pytest.mark.skipif(
not HF_HUB_AMD_ORG_ACCESS,
reason="Read access to huggingface.co/amd is required for this test.",
)
@pytest.mark.parametrize("model_name", MODEL_NAMES)
@pytest.mark.parametrize("task_name, expected_accuracy", EXPECTED_ACCURACIES.items())
def test_gpt_oss_attention_quantization(
model_name: str, task_name: str, expected_accuracy: float
):
measured_accuracy = lm_eval.simple_evaluate(
model="vllm",
model_args=EvaluationConfig(model_name).get_model_args(),
tasks=task_name,
batch_size="auto",
)["results"][task_name]["acc,none"]
rtol = 0.05
assert (
measured_accuracy - rtol < expected_accuracy
and measured_accuracy + rtol > expected_accuracy
), f"Expected: {expected_accuracy} | Measured: {measured_accuracy}"