vllm/tests/models/test_terratorch.py
Russell Bryant 58fab50d82
[Frontend] Require flag for loading text and image embeds (#27204)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-22 15:52:02 +00:00

45 lines
1.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from tests.conftest import VllmRunner
@pytest.mark.parametrize(
"model",
[
"ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
"mgazz/Prithvi_v2_eo_300_tl_unet_agb",
],
)
def test_inference(
vllm_runner: type[VllmRunner],
model: str,
) -> None:
pixel_values = torch.full((6, 512, 512), 1.0, dtype=torch.float16)
location_coords = torch.full((1, 2), 1.0, dtype=torch.float16)
prompt = dict(
prompt_token_ids=[1],
multi_modal_data=dict(
pixel_values=pixel_values, location_coords=location_coords
),
)
with vllm_runner(
model,
runner="pooling",
dtype="half",
enforce_eager=True,
skip_tokenizer_init=True,
enable_mm_embeds=True,
# Limit the maximum number of sequences to avoid the
# test going OOM during the warmup run
max_num_seqs=32,
default_torch_num_threads=1,
) as vllm_model:
vllm_output = vllm_model.llm.encode(prompt)
assert torch.equal(
torch.isnan(vllm_output[0].outputs.data).any(), torch.tensor(False)
)