vllm/vllm/model_executor/models/llama4_eagle.py
zhiweiz 9e0726e5bf
[Meta] Official Eagle mm support, first enablement on llama4 (#20788)
Signed-off-by: morgendave <morgendave@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-07-31 10:35:07 -07:00

242 lines
9.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 the LLAMA4, Meta Inc., vLLM, and HuggingFace Inc. team.
# All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Iterable
from typing import Optional
import torch
import torch.nn as nn
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.logger import init_logger
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.quantization.torchao import TorchAOConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.llama4 import (Llama4DecoderLayer,
Llama4ForCausalLM)
from vllm.model_executor.models.utils import extract_layer_index
from vllm.multimodal.inputs import NestedTensors
from .utils import AutoWeightsLoader, maybe_prefix, merge_multimodal_embeddings
logger = init_logger(__name__)
@support_torch_compile
class LlamaModel(nn.Module):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
start_layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = (
vllm_config.speculative_config.draft_model_config.hf_config)
self.validate_and_update_config(start_layer_id, quant_config)
self.vocab_size = self.config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.config.vocab_size,
self.config.hidden_size,
prefix=maybe_prefix(prefix, "embed_tokens"),
)
self.layers = nn.ModuleList([
Llama4DecoderLayer(
self.config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
) for i in range(self.config.num_hidden_layers)
])
self.fc = torch.nn.Linear(self.config.hidden_size * 2,
self.config.hidden_size,
bias=False)
self.norm = RMSNorm(self.config.hidden_size,
eps=self.config.rms_norm_eps)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
hidden_states = self.fc(
torch.cat((inputs_embeds, hidden_states), dim=-1))
residual = None
for layer in self.layers:
hidden_states, residual = layer(
positions,
hidden_states,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states, hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
name = name.removeprefix("model.")
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# if PP disabled then draft will share embed with target
if get_pp_group().world_size == 1 and \
"embed_tokens." in name:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
for name in params_dict:
# if PP disabled then draft will share embed with target
if get_pp_group().world_size == 1 and \
"embed_tokens." in name:
continue
assert name in loaded_params, f"{name} is not loaded!"
return loaded_params
def validate_and_update_config(
self,
start_layer_id: int,
quant_config: Optional[QuantizationConfig] = None) -> None:
# yoco and moe is not supported by draft model yet
assert self.config.yoco_global_kv_layer is None
assert self.config.yoco_local_kv_layer is None
assert len(self.config.moe_layers) == 0
# draft model layer index is increased by start_layer_id,
# so we need to pad relevant configs accordingly
self.config.no_rope_layers = [
0
] * start_layer_id + self.config.no_rope_layers
# currently only TorchAO quantization is supported
if isinstance(quant_config, TorchAOConfig):
def pad_layer_name(layer: str) -> str:
layer_index = extract_layer_index(layer)
return layer.replace(str(layer_index),
str(layer_index + start_layer_id))
quant_config.torchao_config.module_fqn_to_config = {
pad_layer_name(layer): quantization
for layer, quantization in
quant_config.torchao_config.module_fqn_to_config.items()
}
class EagleLlama4ForCausalLM(Llama4ForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
self.config = (
vllm_config.speculative_config.draft_model_config.hf_config)
target_layer_num = vllm_config.model_config.get_num_layers(
vllm_config.parallel_config)
# draft model quantization config may differ from target model
quant_config = VllmConfig.get_quantization_config(
vllm_config.speculative_config.draft_model_config,
vllm_config.load_config)
self.model = LlamaModel(vllm_config=vllm_config,
prefix="model",
start_layer_id=target_layer_num,
quant_config=quant_config)
logit_scale = getattr(self.config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.config.vocab_size,
scale=logit_scale)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
return self.model(input_ids, positions, hidden_states, inputs_embeds)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> None:
loader = AutoWeightsLoader(
self,
# lm_head is tied with target model (Llama4ForCausalLM)
skip_prefixes=(["lm_head."]),
)
model_weights = {}
weights = [
self.permute_qk_weight_for_rotary(name, loaded_weight)
for name, loaded_weight in weights
]
for name, loaded_weight in weights:
if "lm_head" not in name:
name = "model." + name
model_weights[name] = loaded_weight
loader.load_weights(model_weights.items())
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[NestedTensors] = None,
) -> torch.Tensor:
inputs_embeds = self.model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
multimodal_embeddings,
self.config.image_token_index,
)
return inputs_embeds