mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-16 15:06:58 +08:00
787 lines
30 KiB
Python
787 lines
30 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only MiniCPM-O model compatible with HuggingFace weights."""
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Any, Callable, Literal, Optional, TypedDict, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import BatchFeature, PretrainedConfig
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
from transformers.models.whisper.modeling_whisper import (ACT2FN,
|
|
WhisperAttention,
|
|
WhisperConfig,
|
|
WhisperEncoder)
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
|
|
from vllm.model_executor.layers.quantization.gptq_marlin import (
|
|
GPTQMarlinConfig)
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
|
|
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
|
NestedTensors)
|
|
from vllm.multimodal.parse import (AudioItem, AudioProcessorItems,
|
|
DictEmbeddingItems, ModalityData,
|
|
ModalityDataItems, MultiModalDataItems,
|
|
MultiModalDataParser)
|
|
from vllm.multimodal.processing import (PromptReplacement, PromptUpdate,
|
|
PromptUpdateDetails)
|
|
|
|
from .minicpmv import (_MAX_FRAMES_PER_VIDEO, MiniCPMV2_6,
|
|
MiniCPMVDummyInputsBuilder,
|
|
MiniCPMVMultiModalDataParser,
|
|
MiniCPMVMultiModalProcessor, MiniCPMVProcessingInfo,
|
|
_minicpmv_field_config)
|
|
from .utils import (AutoWeightsLoader, cast_overflow_tensors, flatten_bn,
|
|
maybe_prefix)
|
|
|
|
CPU_DEVICE = torch.device("cpu")
|
|
|
|
|
|
class MiniCPMOAudioFeatureInputs(TypedDict):
|
|
type: Literal["audio_features"]
|
|
audio_features: Union[torch.Tensor, list[torch.Tensor]]
|
|
"""
|
|
Shape: `(batch_size * num_audios * num_slices, num_channels, length)`
|
|
Slice here means chunk. Audio that is too long will be split into slices,
|
|
which is the same as image.
|
|
Padding is used therefore `audio_features` is `torch.Tensor`.
|
|
"""
|
|
|
|
audio_feature_lens: Union[torch.Tensor, list[torch.Tensor]]
|
|
"""
|
|
Shape: `(batch_size * num_audios, num_slices)`
|
|
|
|
This should be feature length of each audio slice,
|
|
which equals to `audio_features.shape[-1]`
|
|
"""
|
|
|
|
|
|
class MiniCPMOAudioEmbeddingInputs(TypedDict):
|
|
type: Literal["audio_embeds"]
|
|
audio_embeds: Union[torch.Tensor, list[torch.Tensor]]
|
|
"""
|
|
Shape: `(batch_size * num_audios, num_slices, hidden_size)`
|
|
|
|
`hidden_size` must match the hidden size of language model backbone.
|
|
instead of a batched tensor.
|
|
Length of each slice may vary, so pass it as a list.
|
|
"""
|
|
|
|
|
|
MiniCPMOAudioInputs = Union[MiniCPMOAudioFeatureInputs,
|
|
MiniCPMOAudioEmbeddingInputs]
|
|
|
|
|
|
def _minicpmo_field_config(hf_inputs: Mapping[str, torch.Tensor]):
|
|
audio_features = hf_inputs.get("audio_features", torch.empty(0))
|
|
num_audios = len(audio_features)
|
|
|
|
return dict(
|
|
**_minicpmv_field_config(hf_inputs),
|
|
audio_features=MultiModalFieldConfig.batched("audio"),
|
|
audio_feature_lens=MultiModalFieldConfig.batched("audio"),
|
|
audio_embeds=MultiModalFieldConfig.batched("audio"),
|
|
audio_token_id=MultiModalFieldConfig.shared("audio", num_audios),
|
|
)
|
|
|
|
|
|
class MiniCPMOAudioEmbeddingItems(DictEmbeddingItems):
|
|
|
|
def __init__(
|
|
self,
|
|
data: Mapping[str, torch.Tensor],
|
|
fields_factory: Callable[
|
|
[Mapping[str, torch.Tensor]],
|
|
Mapping[str, MultiModalFieldConfig],
|
|
],
|
|
) -> None:
|
|
super().__init__(
|
|
data,
|
|
modality="image",
|
|
required_fields={"audio_embeds"},
|
|
fields_factory=fields_factory,
|
|
)
|
|
|
|
|
|
class MiniCPMOMultiModalDataParser(MiniCPMVMultiModalDataParser):
|
|
|
|
def _parse_audio_data(
|
|
self,
|
|
data: Union[dict[str, torch.Tensor], ModalityData[AudioItem]],
|
|
) -> Optional[ModalityDataItems[Any, Any]]:
|
|
if isinstance(data, dict):
|
|
return MiniCPMOAudioEmbeddingItems(
|
|
data,
|
|
fields_factory=_minicpmo_field_config,
|
|
)
|
|
|
|
return super()._parse_audio_data(data)
|
|
|
|
|
|
class MiniCPMOProcessingInfo(MiniCPMVProcessingInfo):
|
|
audio_pattern = "(<audio>./</audio>)"
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {**super().get_supported_mm_limits(), "audio": None}
|
|
|
|
def get_audio_placeholder(
|
|
self,
|
|
audio_lens: int,
|
|
chunk_input: bool = True,
|
|
chunk_length: int = 1,
|
|
) -> str:
|
|
hf_processor = self.get_hf_processor()
|
|
|
|
return hf_processor.get_audio_placeholder(
|
|
audio_lens,
|
|
chunk_input=chunk_input,
|
|
chunk_length=chunk_length,
|
|
)
|
|
|
|
def get_default_audio_pool_step(self) -> int:
|
|
return 2
|
|
|
|
def get_default_audio_sampling_rate(self) -> int:
|
|
return 16000
|
|
|
|
def get_chunk_length(self) -> int:
|
|
return self.get_hf_config().audio_chunk_length
|
|
|
|
def get_max_audio_tokens_per_chunk(self) -> int:
|
|
pool_step = self.get_default_audio_pool_step()
|
|
fbank_feat_in_chunk = 100
|
|
cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
|
|
return (cnn_feat_in_chunk - pool_step) // pool_step + 1
|
|
|
|
def get_max_audio_chunks_with_most_features(self) -> int:
|
|
return 30
|
|
|
|
def get_max_audio_tokens(self) -> int:
|
|
num_chunks = self.get_max_audio_chunks_with_most_features()
|
|
return self.get_max_audio_tokens_per_chunk() * num_chunks
|
|
|
|
def get_audio_len_by_num_chunks(self, num_chunks: int) -> int:
|
|
sampling_rate = self.get_default_audio_sampling_rate()
|
|
num_tokens_per_chunk = self.get_max_audio_tokens_per_chunk()
|
|
return int(num_chunks * sampling_rate / num_tokens_per_chunk) + 1
|
|
|
|
def get_num_frames_with_most_features(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> int:
|
|
max_images = mm_counts.get("image", 0)
|
|
max_videos = mm_counts.get("video", 0)
|
|
max_audios = mm_counts.get("audio", 0)
|
|
|
|
max_image_tokens = self.get_max_image_tokens() * max_images
|
|
max_audio_tokens = self.get_max_audio_tokens() * max_audios
|
|
max_total_frames = self.get_max_video_frames(seq_len -
|
|
max_image_tokens -
|
|
max_audio_tokens)
|
|
max_frames_per_video = min(max_total_frames // max(max_videos, 1),
|
|
_MAX_FRAMES_PER_VIDEO)
|
|
|
|
return max(max_frames_per_video, 1)
|
|
|
|
|
|
class MiniCPMODummyInputsBuilder(
|
|
MiniCPMVDummyInputsBuilder[MiniCPMOProcessingInfo]):
|
|
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
|
|
audio_prompt_texts = self.info.audio_pattern * num_audios
|
|
|
|
return super().get_dummy_text(mm_counts) + audio_prompt_texts
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> MultiModalDataDict:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
audio_len = self.info.get_max_audio_chunks_with_most_features() * \
|
|
self.info.get_default_audio_sampling_rate()
|
|
|
|
audio_mm_data = {
|
|
"audio":
|
|
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
|
|
}
|
|
|
|
return {
|
|
**super().get_dummy_mm_data(seq_len, mm_counts),
|
|
**audio_mm_data,
|
|
}
|
|
|
|
|
|
class MiniCPMOMultiModalProcessor(
|
|
MiniCPMVMultiModalProcessor[MiniCPMOProcessingInfo]):
|
|
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
return MiniCPMOMultiModalDataParser(
|
|
target_sr=self.info.get_default_audio_sampling_rate())
|
|
|
|
def get_audio_prompt_texts(
|
|
self,
|
|
audio_lens: int,
|
|
chunk_input: bool = True,
|
|
chunk_length: int = 1,
|
|
) -> str:
|
|
return self.info.get_audio_placeholder(
|
|
audio_lens,
|
|
chunk_input=chunk_input,
|
|
chunk_length=chunk_length,
|
|
)
|
|
|
|
def process_audios(
|
|
self,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, NestedTensors]:
|
|
if (audios := mm_data.get("audios")) is None:
|
|
return {}
|
|
|
|
parsed_audios = (self._get_data_parser().parse_mm_data({
|
|
"audio": audios
|
|
}).get_items("audio",
|
|
(MiniCPMOAudioEmbeddingItems, AudioProcessorItems)))
|
|
|
|
if isinstance(parsed_audios, MiniCPMOAudioEmbeddingItems):
|
|
audio_inputs = {}
|
|
else:
|
|
audio_inputs = self._base_call_hf_processor(
|
|
prompts=[self.info.audio_pattern] * len(parsed_audios),
|
|
mm_data={"audios": [[audio] for audio in parsed_audios]},
|
|
mm_kwargs={
|
|
**mm_kwargs, "chunk_input": True
|
|
},
|
|
tok_kwargs=tok_kwargs,
|
|
out_keys={"audio_features", "audio_feature_lens"},
|
|
)
|
|
|
|
# Avoid padding since we need the output for each audio to be
|
|
# independent of other audios for the cache to work correctly
|
|
unpadded_audio_features = [
|
|
feat[:, :feature_len] for feat, feature_len in zip(
|
|
audio_inputs["audio_features"],
|
|
audio_inputs["audio_feature_lens"],
|
|
)
|
|
]
|
|
audio_inputs["audio_features"] = unpadded_audio_features
|
|
|
|
tokenizer = self.info.get_tokenizer()
|
|
unk_token_id = tokenizer.get_vocab()["<unk>"]
|
|
audio_inputs["audio_token_id"] = torch.tensor(unk_token_id)
|
|
|
|
return audio_inputs
|
|
|
|
def process_mm_inputs(
|
|
self,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, NestedTensors]:
|
|
return {
|
|
**super().process_mm_inputs(mm_data, mm_kwargs, tok_kwargs),
|
|
**self.process_audios(mm_data, mm_kwargs, tok_kwargs),
|
|
}
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> Sequence[PromptUpdate]:
|
|
base_updates = super()._get_prompt_updates(
|
|
mm_items=mm_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
out_mm_kwargs=out_mm_kwargs,
|
|
)
|
|
|
|
audio_placeholder = self.info.audio_pattern
|
|
|
|
def get_audio_replacement(item_idx: int):
|
|
audios = mm_items.get_items(
|
|
"audio", (MiniCPMOAudioEmbeddingItems, AudioProcessorItems))
|
|
|
|
if isinstance(audios, MiniCPMOAudioEmbeddingItems):
|
|
single_audio_embeds = audios.get(item_idx)["audio_embeds"]
|
|
audio_len = self.info.get_audio_len_by_num_chunks(
|
|
sum(map(len, single_audio_embeds)))
|
|
else:
|
|
audio_len = audios.get_audio_length(item_idx)
|
|
|
|
return PromptUpdateDetails.select_text(
|
|
self.get_audio_prompt_texts(audio_len),
|
|
"<unk>",
|
|
)
|
|
|
|
return [
|
|
*base_updates,
|
|
PromptReplacement(modality="audio",
|
|
target=audio_placeholder,
|
|
replacement=get_audio_replacement),
|
|
]
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return _minicpmo_field_config(hf_inputs)
|
|
|
|
|
|
class MultiModalProjector(nn.Module):
|
|
|
|
def __init__(self, in_dim: int, out_dim: int):
|
|
super().__init__()
|
|
self.linear1 = nn.Linear(in_features=in_dim,
|
|
out_features=out_dim,
|
|
bias=True)
|
|
self.relu = nn.ReLU()
|
|
self.linear2 = nn.Linear(in_features=out_dim,
|
|
out_features=out_dim,
|
|
bias=True)
|
|
|
|
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.relu(self.linear1(audio_features))
|
|
hidden_states = self.linear2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class MiniCPMWhisperEncoderLayer(nn.Module):
|
|
|
|
def __init__(self, config: WhisperConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.embed_dim = config.d_model
|
|
self.self_attn = WhisperAttention(
|
|
embed_dim=self.embed_dim,
|
|
num_heads=config.encoder_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
config=config,
|
|
layer_idx=layer_idx,
|
|
)
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
self.dropout = config.dropout
|
|
self.activation_fn = ACT2FN[config.activation_function]
|
|
self.activation_dropout = config.activation_dropout
|
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
past_key_values = None
|
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
hidden_states, attn_weights, past_key_values = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
past_key_value=past_key_values,
|
|
)
|
|
hidden_states = nn.functional.dropout(hidden_states,
|
|
p=self.dropout,
|
|
training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
hidden_states = nn.functional.dropout(hidden_states,
|
|
p=self.activation_dropout,
|
|
training=self.training)
|
|
hidden_states = self.fc2(hidden_states)
|
|
hidden_states = nn.functional.dropout(hidden_states,
|
|
p=self.dropout,
|
|
training=self.training)
|
|
hidden_states = residual + hidden_states
|
|
|
|
if hidden_states.dtype == torch.float16:
|
|
hidden_states = cast_overflow_tensors(hidden_states)
|
|
|
|
outputs = (hidden_states, )
|
|
|
|
return outputs
|
|
|
|
|
|
class MiniCPMWhisperEncoder(WhisperEncoder):
|
|
|
|
def __init__(self, config: WhisperConfig):
|
|
super().__init__(config)
|
|
self.layers = nn.ModuleList([
|
|
MiniCPMWhisperEncoderLayer(config, layer_idx=i)
|
|
for i in range(config.encoder_layers)
|
|
])
|
|
|
|
def forward(
|
|
self,
|
|
input_features: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
) -> BaseModelOutputWithPast:
|
|
# Ignore copy
|
|
input_features = input_features.to(dtype=self.conv1.weight.dtype,
|
|
device=self.conv1.weight.device)
|
|
|
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
|
|
|
embed_pos = self.embed_positions.weight
|
|
|
|
embed_pos = embed_pos[:inputs_embeds.shape[1], :]
|
|
|
|
hidden_states = inputs_embeds + embed_pos
|
|
hidden_states = nn.functional.dropout(hidden_states,
|
|
p=self.dropout,
|
|
training=self.training)
|
|
|
|
encoder_states = ()
|
|
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
encoder_states = encoder_states + (hidden_states, )
|
|
to_drop = False
|
|
if self.training:
|
|
dropout_probability = torch.rand([])
|
|
if dropout_probability < self.layerdrop: # skip the layer
|
|
to_drop = True
|
|
|
|
# Ignore copy
|
|
if to_drop:
|
|
layer_outputs = (None, None)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
encoder_states = encoder_states + (hidden_states, )
|
|
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=encoder_states,
|
|
)
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
MiniCPMOMultiModalProcessor,
|
|
info=MiniCPMOProcessingInfo,
|
|
dummy_inputs=MiniCPMODummyInputsBuilder)
|
|
class MiniCPMO(MiniCPMV2_6):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
|
if modality.startswith("image"):
|
|
return "(<image>./</image>)"
|
|
if modality.startswith("video"):
|
|
return "(<video>./</video>)"
|
|
if modality.startswith("audio"):
|
|
return "(<audio>./</audio>)"
|
|
|
|
raise ValueError("Only image, video or audio modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
self.apm = self.init_audio_module(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "apm"))
|
|
|
|
self.audio_token_id = None
|
|
|
|
def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
|
|
# GPTQ configs do not have a list of ignored modules, however AutoGPTQ
|
|
# seems to avoid vision encoder sections for some models.
|
|
# See: https://huggingface.co/openbmb/MiniCPM-o-2_6-int4
|
|
if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
|
|
return None
|
|
return quant_config
|
|
|
|
def init_vision_module(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> nn.Module:
|
|
# MiniCPMO GPTQ model leave vpm unquantized.
|
|
quant_config = self._maybe_ignore_quant_config(quant_config)
|
|
return super().init_vision_module(config, quant_config, prefix)
|
|
|
|
def init_resampler(
|
|
self,
|
|
embed_dim: int,
|
|
vision_dim: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> nn.Module:
|
|
# MiniCPMO GPTQ model leave resampler unquantized.
|
|
quant_config = self._maybe_ignore_quant_config(quant_config)
|
|
return super().init_resampler(embed_dim, vision_dim, quant_config,
|
|
prefix)
|
|
|
|
def init_audio_module(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
# Do not use parameters temporarily
|
|
audio_config = self.config.audio_config
|
|
model = MiniCPMWhisperEncoder(audio_config)
|
|
audio_output_dim = int(audio_config.encoder_ffn_dim // 4)
|
|
self.audio_avg_pooler = \
|
|
nn.AvgPool1d(self.config.audio_pool_step,
|
|
stride=self.config.audio_pool_step)
|
|
self.audio_projection_layer = \
|
|
MultiModalProjector(in_dim=audio_output_dim,out_dim=self.embed_dim)
|
|
self.audio_encoder_layer = -1
|
|
return model
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self, skip_prefixes=["tts"])
|
|
return loader.load_weights(weights)
|
|
|
|
def subsequent_chunk_mask(
|
|
self,
|
|
size: int,
|
|
chunk_size: int,
|
|
num_left_chunks: int = -1,
|
|
device: torch.device = CPU_DEVICE,
|
|
num_lookhead: int = 0,
|
|
) -> torch.Tensor:
|
|
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
|
# Vectorized computation of row indices and chunk boundaries
|
|
row_indices = torch.arange(size, device=device)
|
|
chunk_indices = row_indices // chunk_size
|
|
if num_left_chunks < 0:
|
|
# If num_left_chunks < 0, start is always 0 for all rows
|
|
start_indices = torch.zeros_like(row_indices)
|
|
else:
|
|
# Compute start indices vectorially
|
|
start_chunk_indices = torch.clamp(chunk_indices - num_left_chunks,
|
|
min=0)
|
|
start_indices = start_chunk_indices * chunk_size
|
|
# Compute ending indices vectorially
|
|
end_chunk_indices = chunk_indices + 1
|
|
end_indices = torch.clamp(end_chunk_indices * chunk_size +
|
|
num_lookhead,
|
|
max=size)
|
|
# Create column indices for broadcasting
|
|
col_indices = torch.arange(size, device=device).unsqueeze(0)
|
|
start_indices = start_indices.unsqueeze(1)
|
|
end_indices = end_indices.unsqueeze(1)
|
|
# Vectorized mask creation
|
|
ret = (col_indices >= start_indices) & (col_indices < end_indices)
|
|
return ret
|
|
|
|
def _get_feat_extract_output_lengths(self,
|
|
input_lengths: torch.LongTensor):
|
|
input_lengths_after_cnn = (input_lengths - 1) // 2 + 1
|
|
input_lengths_after_pooling = (
|
|
input_lengths_after_cnn -
|
|
self.config.audio_pool_step) // self.config.audio_pool_step + 1
|
|
input_lengths_after_pooling = input_lengths_after_pooling.to(
|
|
dtype=torch.int32)
|
|
|
|
return input_lengths_after_cnn, input_lengths_after_pooling
|
|
|
|
def get_audio_hidden_states(
|
|
self, data: MiniCPMOAudioFeatureInputs) -> list[torch.Tensor]:
|
|
chunk_length = self.config.audio_chunk_length
|
|
|
|
# (bs, 80, frames) or [], multi audios need filled in advance
|
|
wavforms_raw = data["audio_features"]
|
|
if isinstance(wavforms_raw, list):
|
|
B = len(wavforms_raw)
|
|
C = wavforms_raw[0].shape[-2]
|
|
L = max(item.shape[-1] for item in wavforms_raw)
|
|
device = wavforms_raw[0].device
|
|
dtype = wavforms_raw[0].dtype
|
|
|
|
wavforms = torch.zeros((B, C, L), dtype=dtype, device=device)
|
|
for i, wavforms_item in enumerate(wavforms_raw):
|
|
L_item = wavforms_item.shape[-1]
|
|
wavforms[i, ..., :L_item] = wavforms_item
|
|
else:
|
|
wavforms = wavforms_raw
|
|
|
|
# list, [[x1, x2], [y1], [z1]]
|
|
audio_feature_lens_raw = data["audio_feature_lens"]
|
|
if isinstance(audio_feature_lens_raw, torch.Tensor):
|
|
audio_feature_lens_raw = audio_feature_lens_raw.unbind(0)
|
|
|
|
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
|
|
batch_size, _, max_mel_seq_len = wavforms.shape
|
|
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
|
|
|
|
# Create a sequence tensor of shape (batch_size, max_seq_len)
|
|
seq_range = (torch.arange(
|
|
0,
|
|
max_seq_len,
|
|
dtype=audio_feature_lens.dtype,
|
|
device=audio_feature_lens.device).unsqueeze(0).expand(
|
|
batch_size, max_seq_len))
|
|
lengths_expand = audio_feature_lens.unsqueeze(1).expand(
|
|
batch_size, max_seq_len)
|
|
# Create mask
|
|
padding_mask = seq_range >= lengths_expand # 1 for padded values
|
|
|
|
audio_attention_mask_ = padding_mask.view(
|
|
batch_size, 1, 1, max_seq_len).expand(batch_size, 1, max_seq_len,
|
|
max_seq_len)
|
|
audio_attention_mask = audio_attention_mask_.to(
|
|
dtype=self.apm.conv1.weight.dtype,
|
|
device=self.apm.conv1.weight.device)
|
|
|
|
if chunk_length > 0:
|
|
chunk_num_frame = int(chunk_length * 50)
|
|
chunk_mask = self.subsequent_chunk_mask(
|
|
size=max_seq_len,
|
|
chunk_size=chunk_num_frame,
|
|
num_left_chunks=-1,
|
|
device=audio_attention_mask_.device,
|
|
)
|
|
audio_attention_mask_ = torch.logical_or(
|
|
audio_attention_mask_, torch.logical_not(chunk_mask))
|
|
|
|
audio_attention_mask[audio_attention_mask_] = float("-inf")
|
|
audio_states = self.apm(
|
|
wavforms, attention_mask=audio_attention_mask).hidden_states[
|
|
self.audio_encoder_layer]
|
|
audio_embeds = self.audio_projection_layer(audio_states)
|
|
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
audio_embeds = self.audio_avg_pooler(audio_embeds)
|
|
audio_embeds = audio_embeds.transpose(1, 2)
|
|
|
|
_, feature_lens_after_pooling = \
|
|
self._get_feat_extract_output_lengths(audio_feature_lens)
|
|
|
|
num_audio_tokens = feature_lens_after_pooling
|
|
|
|
final_audio_embeds = list[torch.Tensor]()
|
|
idx = 0
|
|
for i in range(len(audio_feature_lens_raw)):
|
|
target_audio_embeds_lst = list[torch.Tensor]()
|
|
for _ in range(len(audio_feature_lens_raw[i])):
|
|
target_audio_embeds_lst.append(
|
|
audio_embeds[idx, :num_audio_tokens[idx], :])
|
|
idx += 1
|
|
|
|
final_audio_embeds.append(torch.cat(target_audio_embeds_lst))
|
|
|
|
return final_audio_embeds
|
|
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object) -> Optional[MiniCPMOAudioInputs]:
|
|
audio_features = kwargs.pop("audio_features", None)
|
|
audio_embeds = kwargs.pop("audio_embeds", None)
|
|
|
|
if audio_features is None and audio_embeds is None:
|
|
return None
|
|
|
|
audio_token_id = kwargs.pop("audio_token_id")
|
|
if audio_token_id is not None:
|
|
assert isinstance(audio_token_id, torch.Tensor)
|
|
self.mm_token_ids.add(audio_token_id.flatten().unique().item())
|
|
|
|
if audio_embeds is not None:
|
|
if not isinstance(audio_embeds, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio_embeds. "
|
|
f"Got type: {type(audio_embeds)}")
|
|
|
|
audio_embeds_flat = flatten_bn(audio_embeds)
|
|
|
|
return MiniCPMOAudioEmbeddingInputs(
|
|
type="audio_embeds",
|
|
audio_embeds=audio_embeds_flat,
|
|
)
|
|
|
|
if not isinstance(audio_features, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio_features. "
|
|
f"Got type: {type(audio_features)}")
|
|
|
|
audio_feature_lens = kwargs.pop("audio_feature_lens")
|
|
if not isinstance(audio_feature_lens, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio_feature_lens. "
|
|
f"Got type: {type(audio_feature_lens)}")
|
|
|
|
audio_features_flat = flatten_bn(audio_features)
|
|
audio_feature_lens_flat = flatten_bn(audio_feature_lens)
|
|
|
|
return MiniCPMOAudioFeatureInputs(
|
|
type="audio_features",
|
|
audio_features=audio_features_flat,
|
|
audio_feature_lens=audio_feature_lens_flat,
|
|
)
|
|
|
|
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
|
|
modalities = super()._parse_and_validate_multimodal_inputs(**kwargs)
|
|
|
|
# Preserve the order of modalities if there are multiple of them
|
|
# from the order of kwargs.
|
|
for input_key in kwargs:
|
|
if input_key in ("audio_features",
|
|
"audio_embeds") and "audios" not in modalities:
|
|
modalities["audios"] = self._parse_and_validate_audio_input(
|
|
**kwargs)
|
|
|
|
return modalities
|
|
|
|
def _process_audio_input(
|
|
self,
|
|
audio_input: MiniCPMOAudioInputs,
|
|
) -> Union[torch.Tensor, list[torch.Tensor]]:
|
|
if audio_input["type"] == "audio_embeds":
|
|
return audio_input["audio_embeds"]
|
|
|
|
return self.get_audio_hidden_states(audio_input)
|
|
|
|
def _process_multimodal_inputs(self, modalities: dict):
|
|
multimodal_embeddings = super()._process_multimodal_inputs(modalities)
|
|
|
|
for modality in modalities:
|
|
if modality == "audios":
|
|
audio_input = modalities["audios"]
|
|
audio_features = self._process_audio_input(audio_input)
|
|
multimodal_embeddings += tuple(audio_features)
|
|
|
|
return multimodal_embeddings
|